HTML Forms

Forms require at least two files:

= the web page holding the form

= the web page that processes the form data

Form editing and processing is done with script (either JavaScript or VBScript); functions may
reside in additional script files.

Contents:
SUDMISSION ... 7
Actual Form Web Page...........coooeeveee. 1 0] 3Ly S 7
Form Controls. ... 1 FOTM Data....ceoceeeenceeiseeeieeiseees e ssessesenes 7
LABEL.....ccocoviiiiiiiiiiciiiiiiiiccics 2
INPUT ooooooeeoecevvereeesssssssssiieessnnesesssss 2 Sample Form......ccccoviiiinnniccne. 8
L1001 0) N S 3 . ,
SELECT, OPTION, and OPTGROUP.......... 3 Form Edltmg LOglC 9
FELDSET and LEGEND. .4 | Form Processing Web Page..........10
SCIIPS o 5
Actual Form Web Page

The form page contains several components:

= text (as paragraphs, lists, etc.) and images

= the actual form elements (controls)

= script that positions cursor in a control when form opens
= scripts that edit entered data

= submission

There are several HTML tags used exclusively for forms: The paired FORM tag defines the entire
form. Nested within it are tags for individual controls: INPUT, BUTTON, SELECT, OPTION,
OPTGROUP, TEXTAREA, FIELDSET, LEGEND. Some controls may be labeled with the LABEL
tag.

Sample:

<FORM . . .>
<INPUT . . .>
<INPUT . . .>

</FORM>

Form Controls

There are several types of controls:

= text box

= command button

= check box, radio button

= file select (allows user to select a file to be submitted with the form; presented with Browse
button which opens a “Choose file” window)

" menu

Revision: 2/15/2007 2:37:00 PM Page 1 of 11
Copyright 2001-2007 by Susan Dorey Designs

HTML Forms

There are four kinds of command buttons. Three have predefined actions: Submit button
activates the form submission. Image button is a graphical submit button that is decorated with a
custom image. Reset button resets the controls to their original values. Push button has an event
procedure defined in script.

Several HTML tags define controls: INPUT, BUTTON, SELECT, OPTION, OPTGROUP,
TEXTAREA, FIELDSET, LEGEND. Tags that are paired have content, text and/or image.

LABEL

Some form controls automatically have labels associated with them (e.g., push buttons), while
most do not. The paired LABEL tag is used to specify labels for controls that do not implicitly
have them. The tag has attribute FOR which identifies the control to be labeled by its id. It also
has general attributes ID, CLASS, STYLE, and various event attributes (e.g., ONCLICK). The
label is presented to the left or right of the control depending if its tag occurs before or after the
control’s tag.

Sample:
<FORM . . .>
<LABEL FOR=me>Label text</LABEL>
<INPUT TYPE=text SI1ZE=20 ID=me>
</FORM>

Labels can also be done with HTML content:

Last name: <INPUT NAME=lastname TYPE=text SI1ZE=15 TABINDEX=1>

First name: <INPUT NAME=Firstname TYPE=text S1ZE=20 TABINDEX=2>

INPUT

Most form controls are defined by the unpaired INPUT tag. It has form-specific attributes TYPE,
NAME, VALUE, SIZE, MAXLENGTH, CHECKED, SRC, and TABINDEX. It also has general
attributes ID, CLASS, STYLE, and various event attributes (e.g.,, ONCHANGE).

The TYPE attribute defines the control type. Values are: text (single-line), password, checkbox,
radio, button, hidden, file, submit, reset, image. Hidden controls are not rendered, but their
values are submitted with the form.

The NAME attribute assigns the control name.

The VALUE attribute specifies the control’s initial value. It is optional except for radio buttons
and check boxes.

The SIZE attribute specifies the initial width of the control. The unit of measure is pixels except
for text, password, and file select whose unit of measure is character.

The MAXLENGTH attribute specifies the maximum number of characters that the user may
enter. Applies only to text and password controls. When the value is greater than SIZE, the
browser provides a scrolling mechanism.

Revision: 2/15/2007 2:37:00 PM Page 2 of 11
Copyright 2001-2007 by Susan Dorey Designs

HTML Forms

The CHECKED attribute, which applies only to radio buttons and check boxes, specifies if the
control is selected.

The SRC attribute applies only to the image button. It specifies the location of the image file.

The TABINDEX attribute specifies the position of the subject control in the tab order. Avoid
leading zeroes.

Radio buttons present a set of mutually exclusive choices. When one is one, all others are off. All
radio buttons in the same group-set have the same NAME but different VALUE. Only one radio
button can have CHECKED = True.

Example:

<INPUT TYPE=radio NAME=biztype VALUE="mfg”’>Manufacturer

<INPUT TYPE=radio NAME=biztype VALUE="con”’>Consultant

<INPUT TYPE=radio NAME=biztype VALUE="dis”>Distributor

BUTTON

The paired BUTTON tag defines a command button. It has attributes: TYPE, NAME, VALUE,
and TABINDEX. It also has general attributes ID, CLASS, STYLE, and various event attributes
(e.g., ONCLICK). Tag content can be text and/or image. Buttons created with this tag function
like those created with the INPUT tag, but they offer richer rendering possibilities.

The TYPE attribute has values submit, reset, and button. The NAME attribute assigns the control
name. The VALUE attribute specifies the control’s initial value; however it is not displayed with
IE5. The width of the button is enough to present the contents (the text and/or image within the
paired tags) with margins.

Sample:

<BUTTON TYPE=button>button text goes here</BUTTON>

<BUTTON TYPE=button>this button text goes here
</BUTTON>

SELECT, OPTION, and OPTGROUP

The paired SELECT tag creates a menu or list. Each choice is specified by a nested OPTION tag
of which there must be at least one. Choices can be grouped by the paired OPTGROUP tag.

The SELECT tag has attributes NAME, SIZE, MULTIPLE, and TABINDEX. It also has general
attributes ID, CLASS, STYLE, and various event attributes (e.g., ONCLICK). The SIZE attribute
specifies the number of rows to be visible. The MULTIPLE attribute specifies one or more
selections are allowed.

In IE5, the menu choices are listed sequentially in a list box sized by the SIZE attribute and whose
bottom is on the baseline; this alignment can be changed with CSS vertical-align. When the
number of options > size, a vertical scroll bar appears.

Revision: 2/15/2007 2:37:00 PM Page 3 of 11
Copyright 2001-2007 by Susan Dorey Designs

HTML Forms

The paired OPTION tag specifies a selectable choice for a SELECT tag. It has attributes
SELECTED, VALUE, and LABEL. The SELECTED attribute specifies the choice is pre-selected.
The VALUE attribute specifies the initial value of the control; if it is not used, the initial value is
set to the contents of the tag. The LABEL attribute overrides the browser’s use of the tag’s
content as a label; however this doesn’t work in IE5.

Sample:

<SELECT SI1ZE=1 MULTIPLE>
<OPTION>First choice</OPTION>
<OPTION>second choice</0OPTION>

</SELECT>

The paired OPTGROUP tag defines a group of choices. It has attribute LABEL which defines the
label for the group of choices. Subject choices are grouped within the OPTGROUP tags.
OPTGROUPS may not be nested. The group’s label is presented differently (bold and italic) than
choices, which are indented. Some of this formatting can be controlled with CSS.

Sample:
<SELECT SIZE=8>
<OPTGRPOUP LABEL=First>
<OPTION>First choice</OPTION>
<OPTION>second choice</0OPTION>
</0OPTGROUP>
</SELECT>

TEXTAREA
The paired TEXTAREA tag creates a multi-line text box. It has attributes NAME, ROWS, COLS,

and TABINDEX. It also has general attributes ID, CLASS, STYLE, and various event attributes
(e.g., ONCHANGE). IE5 always presents a vertical scroll bar (and no horizontal one).

Attribute NAME assigns the control’s name.

Attribute ROWS specifies the number of visible text lines. When user enters more text than fits in
the number of rows, a scroll bar appears.

Attribute COLS specifies the width of the control in average character widths. When user enters
more text than fits in the number of rows, a scroll bar appears.

Sample:

<TEXTAREA ROWS=2 COLS=50>
First line of text.
Second line of text.
</TEXTAREA>

FIELDSET and LEGEND

The paired FIELDSET tag creates a box that surrounds embedded controls and labels. This
allows authors to visually group related controls. The paired LEGEND tag creates a caption for
the group box that, in IE5, appears on top of the top border.

Revision: 2/15/2007 2:37:00 PM Page 4 of 11
Copyright 2001-2007 by Susan Dorey Designs

HTML Forms

The FIELDSET tag has only event attributes (e.g., OnMouseOver). The width of the fieldset
defaults to the window width; this can be changed with CSS.

The LEGEND tag has no unique attributes. It has general attributes ID, CLASS, STYLE, and
various event attributes (e.g., ONCLICK). The position of the legend relative to the fieldset can
be specified with a deprecated attribute (ALIGN) or with CSS text-align and vertical-align;
however, none of these have any effect in IE5. The default position is top and left.

Sample:

<FIELDSET>

<LEGEND>contents of legend</LEGEND>
<INPUT TYPE=text SIZE=30>
</FI1ELDSET>

Scripts

Client-side scripts can:

* size and position web page when it opens

= position cursor when form opens

= edit entered data

* manipulate one control based on the value of a second control

= determine which, if any, value was selected for a SELECT control
= setstyle rules

= disable/enable controls

= present help

Event procedures are one mechanism for implementing client-side scripts. There are several
ways in which an event procedure can be executed:

= Within an HTML tag:
<INPUT . . . ONCHANGE="function_name”
<INPUT . . . ONCHANGE="statement(s)”

= Separate from HTML tag:
<INPUT NAME=Ffield2 SIZE=50>
<SCRIPT TYPE=text/vbscript>
Sub field2_changed()
I field2.value = “abc” Then
button3.enabled = True
Else
button3.enabled = False
End If
End Sub
</SCRIPT>

A page’s OnOpen event can position the cursor in the first form control.
<head>
<script type="text/javascript'>
// puts focus on first element in First form
function setfocus(a,b)

Revision: 2/15/2007 2:37:00 PM Page 5 of 11
Copyright 2001-2007 by Susan Dorey Designs

HTML Forms

{ document.forms[a]-elements[b].focus() }
</script>

</head>

<body onLoad="setfocus(0,0)”>

<form>

<input type="text" name="field" size="30">
<input type="text" name="userid" size="10">
<input type="button" value="Get Focus'>
</form>

</body>

A control’s double-click (OnDblClick) event can open a help file.
A control’s OnChange event can edit the value.

A control’s event can affect other controls:

= Give focus to a second control by using the focus method (see positioning cursor when form
opens).

= Disable a second control by setting its disabled attribute to True. A disabled control does not
get focus, is skipped by tabbing navigation, and cannot be successful. Most controls can
have the disabled attribute: button, input, optgroup, option, select, and textarea.

= Protect a second control by setting its readonly attribute to True. A readonly control can have
focus, is included in tabbing navigation, can be successful, but cannot be changed by the
user. Two controls have the readonly attribute: input and textarea.

Determine which, if any, value was selected for a SELECT control:
if (document.soq.state.selectedIndex == -1) // none selected

In JavaScript, the SELECT element can have one of two types: “select-one” indicates only a single
selection is allowed, and “select-multiple” indicates one or more selections are allowed. If multi-
select, property selectedIndex is the index of the first selected entry.

Style rules can be set. Elements subject to this should have an id established in their HTML tag.
If elements are to be handled as group, they can be grouped by the DIV tag. Script code then sets

the element’s style:
<DIV id="x"> . . . </DIV>

var eid = document.getElementByld(*x”);
eid.style._display = “none”;

User input can be blocked by disabling a control (applicable to BUTTON, INPUT, OPTGROUP,
OPTION, SELECT, and TEXTAREA) or making the control read-only (applicable to INPUT and
TEXTAREA). Disabled controls cannot receive focus and cannot be successful. Read-only

controls can get the focus and can be successful. These properties can be modified dynamically

in script, but there are some limitations. You can disable a button:
document.soq.cont.disabled = true;

The form’s OnSubmit event can initiate editing.

Server-side scripts process the form data after it is submitted. They are discussed in the “Form
Processing Web Page” section.

Revision: 2/15/2007 2:37:00 PM Page 6 of 11
Copyright 2001-2007 by Susan Dorey Designs

HTML Forms

Submission
Form data is sent to a separate web page by submission. This is specified by the FORM tag.

FORM

The paired FORM tag acts as a container for form controls. It has attributes ACTION, METHOD,
ENCTYPE, ACCEPT-CHARSET, ACCEPT, and NAME. It also has general attributes ID, CLASS,
STYLE, and various event attributes (e.g., ONSUBMIT, ONRESET). The ONSUBMIT and
ONRESET can return False and cancel the submission or reset.

The ACTION attribute specifies the URL of the processing web page.

The METHOD attribute has two values: get and post. “Get” is the default. “Get” causes the
form data to be appended to the URL specified by the ACTION attribute and separated from it
by a question mark (“?”). “Post” causes the form data to be included in the header of the form
page and sent to the URL. If the form processing modifies a database, the “post” method should
be used. The “get” method restricts data values to ASCII characters; only the “post” method
covers the entire character set.

The ENCTYPE attribute is used only when the METHOD = post. It specifies the content type
used to submit the form to the server. The value “application/x-www-form-urlencoded” is the

default value. The value “multipart/form-data” should be used when an INPUT tag has
TYPE=file.

The ACCEPT-CHARSET attribute specifies the list of character encodings for data sent to the
server. The value is a space-and/or comma-delimited list of charset values. The default value is
“unknown” which is adequate.

The ACCEPT attribute specifies a comma-separated list of content types that a server processing
this form will handle correctly. This is optional.

The NAME attribute assigns the element a name that can be referred to by scripts and/or style
sheets. However, the ID attribute should be used for this purpose.

Form Data

Only successful controls are valid for submission.

= Controls with no value are not successful. (N/A for text and select in IE6.)

= Disabled controls are not successful, but hidden controls may be successful.

= If a form contains more than one submit button, only the activated one is successful.

= Reset buttons are not successful.

= All selected checkboxes may be successful.

= Only selected radio buttons may be successful.

* Only selected list box choices may be successful.

= The current value of a file select control is a list of one or more file names. Upon submission,
the contents of each file are submitted with the rest of the form data.

Revision: 2/15/2007 2:37:00 PM Page 7 of 11
Copyright 2001-2007 by Susan Dorey Designs

HTML Forms

A form data set is a sequence of control-name:value pairs constructed from successful controls.

Example:
Ffirstname=aaa&lastname=bbb&userid=ccc&sub=ddd&topic=eee&topic=Fff.

Sample Form

The onSubmit event handler invokes the editing logic. The form is submitted to the file named
in action only if the event handler returns true.

<body>

<FORM action="sub.html' method="get" onSubmit="return CheckForm(this)”>

ldentify yourself_

First name: <input type=""text" name="firstname'>

Last name: <input type="text"'" name="'lastname''>

E-mail userid: <input type="text'" name="'userid" size=4> @ PGE.COM

Choose one desired action.

<input type="radio™ name="sub" value='"subscribe"> Subscribe

<input type="radio" name="sub" value="cancel'> Cancel
subscription

<input type="'radio" name="'sub'" value='change''> Change
subscription

Select topic(s) for which you want notification.

<input type="'checkbox'" name=""topic" value="iIntro"> 1.
Introduction

<input type="checkbox'" name="topic" value="common'> 3. Common

<input type="checkbox' name="topic" value="mtrmgmt"> 5. Meter

Management

<input type="'checkbox' name=""topic" value="mtrread'> 6. Meter
Reading

<input type="checkbox' name="topic" value="field"> 7. Field
Work

Submit to Manual editor.

<input type="submit" value=""Submit"” style=""background: teal'>

</FORM>

The Submit control initiates a link to URL:
sub._html?Ffirstname=aaa&lastname=bbb&userid=ccc&sub=ddd&topic=eee&topic=
L

where xxx is the value entered/selected/checked in the various input fields. Note: there are as
many “topic” pairs as there are checked controls. Only successful controls are sent as name-
value pairs. IE has a max URL length = 2,048 characters; this applies to both POST and GET
request URLs.

Revision: 2/15/2007 2:37:00 PM Page 8 of 11
Copyright 2001-2007 by Susan Dorey Designs

HTML Forms

Form Editing Logic

This code may be held in the same page as the form, however it is preferred to put it in a separate
script file.

<head>
<script type="text/javascript'>
function RequiredPresent(field)

if (field.value == ") { return false }
else { return true }

}

function CheckForm(input)
{
var ErrorCount = O
var msg = " is required, please enter before submitting
subscription request."
var field = input.elements["firstname']
if (RequiredPresent(field) == false)
{
++ErrorCount
Ffield.focus(Q)
alert(""First name"™ + msg)

d = input.elements["lastname']
IRequiredPresent(field))

++ErrorCount
field.focus()
alert('Last name" + msQ)

eld = input._elements["userid]
TRequiredPresent(field))

++ErrorCount
field.focus()
alert("E-mail userid"” + msg)
}
var validid = N\w{4}/
if (Field.value 1= "")
{
it (validid.test(field.value) I= true)
{
++ErrorCount
field.focus()
alert("E-mail userid must be four alphanumeric
characters.'™)

}
}

var CountChapters = input.topic.length
for (var n = 0; n < CountChapters; n++)

{
if (input.topic[n].checked) { break }

Revision: 2/15/2007 2:37:00 PM Page 9 of 11
Copyright 2001-2007 by Susan Dorey Designs

HTML Forms

}
if (n == CountChapters)
{
++ErrorCount
alert("'At least one chapter must be selected.')
}
if (ErrorCount > 0) { return false }
else { return true }
}
</script>

Form Processing Web Page

This page must parse the URL string to retrieve the form data. In the following example this is
done with a JavaScript file urlparser.js which I downloaded from wevbdeveloper.earthweb.com.

After parsing the URL string into two arrays—one for the names, the second for the values—the
program uses the data to populate explicitly-named variables. These variables are then used for
specific purposes, in this case to create a e-mail.

<head>
<script type="text/javascript'” src="._./urlparser.js">
</script>

<script type="text/javascript'>

<I--

// document.URL is mentioned in reference docs, but it excludes the ?
portion

parseCallingURL(window. location.href) //function is in urlparser.js

var idx = getMaxVars() //function is in urlparser.js

var na = getNameArray() //function is in urlparser.js

var va = getValueArray() //function is in urlparser.js

var FirstName = null
var LastName = null

var Userid = null

var Action = null

var TopiclList = """

var n

for (n=0; n<idx; n=n+l)
{ switch (na[n])

{ case "firstname" : FirstName = va[n]; break;
case "lastname'" : LastName = va[n]; break;
case "userid" : Userid = va[n]; break;
case ''sub™ : Action = va[n]; break;
case ''topic" : TopicList = TopicList + va[n] + ", '; break;
default : document._write(*'<p>Sorry! Program error.
Notify Manual editor.</p>"")
}
}
var editor = "xxxx@pge.com"
Revision: 2/15/2007 2:37:00 PM Page 10 of 11

Copyright 2001-2007 by Susan Dorey Designs

HTML Forms

var intro = "<p>Please confirm the following request to be
automatically notified of \

changes in the Soft Tables Data Maintenance Manual. \

Correct any information as necessary and forward this e-mail to the

editor ("
+ editor + ") .</p>"
var you = "<p>First name = " + FirstName +
"
Last name = " + LastName +
"
Userid = " + Userid + "@pge.com</p>"
var act = "'<p>Action requested = " + Action + "''</p>"
var topics = ''<p>Topics = " + TopiclList

document.write (intro + you + act + topics)

//-->
</script>
</head>

Revision: 2/15/2007 2:37:00 PM Page 11 of 11
Copyright 2001-2007 by Susan Dorey Designs

	Contents:
	Actual Form Web Page
	Form Controls
	LABEL
	INPUT
	BUTTON
	SELECT, OPTION, and OPTGROUP
	TEXTAREA
	FIELDSET and LEGEND

	Scripts
	Submission
	FORM

	Form Data
	Sample Form
	Form Editing Logic
	Form Processing Web Page

