This is a companion document to Microsoft Access Techniques.

Contents:

VBA Basics 2
Introduction to VBccccovvvvvvnnninniniicnns 2
CONSEANLS.....ovcvviiiiicicccc 2
Enumerated Data Typecccvvvvvevinnievienne. 3
Bit Masks.........ccccccovvnnn.

Empty Fields

Application Documentation 6
Report Database Objectscccovvvvviniiinnnns 6
Report Forms and Controls with Data Source9
Report Referencescocouvvcvvvvccvnininn, 10
Report Permissions............ceevveveveveveueceeierennns 10
Report Fields in Tables.............cccccocvvvnnininnnns 11

Automation, Formerly OLE Automation.......... 13
Background...........coceevviiniiiiiiiiice, 14

Interact with Word 16
AULOMALION ..o 16
VISIDIE ..o 17
Binding........ccoovvvviviviiiiiiiiiiiiiciii 17
Handling Read-Only Documents.............c........ 18
Field Codesccooovvviviiiiinciiiiciccccciia, 18

Interact with Excel
Using Automation.......

Accessing Workbooks

Refer t0 Cells ...,
Manipulating an Excel File............c.ccoevvvvvnnnn. 23
HYperlinksovveveiiiiiiiicccccseieiican 26
Export Access Table to Excel File....................... 27
Create Excel Spreadsheet From Access Table.....27
Another Access to Excel Technique.................... 29
Import Excel Filecccoovvvviviviiiiiiiiinnns 30

Visual Basic Code (in Modules)......................... 30
OVOIVICW ... 30
Statements with Arquments..............cccceeveueuenee. 31
Set References for Object Libraries..................... 31
Proceduresccocovevviviivniiininiiiiiiiii 32
Object Model: Collections, Objects, Methods,

Properties........ccoovvvivininiiiiiiiiiinn 33
Process COntrol.........cuvivvneiviiiiiiieisieinnn, 33
ReCUTSION ...t 36
Global Variables etc.cccoovvvvviinininiininnnn, 36
Error Handling.........ccccvvvevviiccnccnicnnn, 37
Doing Things Periodically.............ccccovvvvivennen. 40
Indicate Progress— User Feedback 41
ASYNCHIONICIEY ..o, ... 47
Referring to the Database48
Message Boxc.oeueeeeeveeeveieiciciicicieee 48
Use Input Box To Get Data From User.............. 49
Open/Close A FOTM.......ccvveeeeiiiiiiiiicncnennnns 49

Revision: 3/18/2012
Copyright 2001-2012 by Susan J. Dorey

Open/Close a Report
Open Table............ccovvevvniniiiciiiicceeiin,
Read a Linked Table, Find a Record................... 51
Run a QUery ... 52
Using ODBC Direct........cccvvvevviiiiiennniiinnnn, 54
Table EXTSEENCEcucuvvevevaiiiiiiiiiiiicicieeieiin, 55
Update a Table in Code............ccccooovvcurununnnne. 55
Update Parent-Child Tables in Code 55
Count the Number of Occurrences of a

Character in a Fieldccccoeeevininnn. 56
Count Recordscouevevnnviviiiinincieicinin, 57
String Manipulation.............ccocovvvvcvvniniiiennnns 57
Getting Network User Idcccccvvvvniiinnnns 60
Combine Records by Stingingc.c.ceeuvee. 62
Let User Cancel Program...........cccoocovvvvcnne. 64
Log User ACHTItY w.cooveveveveieiiiiicicieiieiin 64
Change a Table Field Namecccovovenenn 64
Is FUNCHONS oo 64
Run-time Error 70 Permission Denied.............. 65
Change Text of Access Title Bar 66
Export Table as Spreadsheetcccc...... 68
Create Table by Import with Hyperlink.............. 68
File AtFIDULES.cocveveviiiiircicieece 68
Get/Set File Information with

FileSystemObject............ccccovvvvivivnvrnnnnn. 69
Using the Shell Objects.........c.c.cccovivivivvunnnnnnn. 73
Prompt User for Folder-Directory with Shell

APIS..coiiiiiiiiiiiiicc 75
Prompt User for Filename/Folder With

FileDialog Object..........c.cccovvvvvvvennnnnnn.

Walking a Directory Structure....
Use Dir To Capture Filenames
Rename Filecovvveiiiiiiiiicciieiiicicnns

CopY A File ..o
Delete Fileuouovoviviveiiiniinieieieieiciiiincieieieienne,
Delete Folderouuvviiiiiiiiiciiiisisieiiiinns
File and Office Document Properties................. 85
Get UNC....coiviiiiciiciciicisicccccea, 91
DAO ObjJectsccovvvvivivveviiiiiiiiicciiiiiinnn 92
Using AUtomationcecvvvvvvivivienneicnnnn, 94
Read MDB From Word Document.................... 95
Populate Non-Table Data in a Form or Report.. 96
Custom Object as Classc.cocevvvrrereueennian,

Controlling a Form by a Class Object....
What Can the Form Do When Started by a

ClASS? i 102
Custom EVents.......cccoovvvviviniviiciiiiiiinnas 102
USErFOIM....ocvvvviiiciiiiiiciiciccicicc 104
Run a Procedure Whose Name is in a String .. 106
Hyperlinks in Excel File............c.c.cccoouvurueunnn. 106
Menu Bars and Toolbars.............ccccvvuveieiinnn. 106

Page 1 of 111

VBA Basics

Introduction to VB

Programming languages have:

= The language itself

= A development environment. Even though source code is written as plain text, you also
need —usually —a way to test, debug, and compile the code. Languages can be divided into
(a) those that are compiled into a load module consisting of CPU-based instructions and (b)
those that are interpreted at run time. VB programs are compiled.

= An execution environment. Compiled programs are typically composed of files named
pgm.exe and pgm.dll. The OS can start EXEs. Interpreted languages need an interpreter, one
example is JavaScript which is interpreted by the web browser.

The language has a number of elements, the most obvious being verbs, nouns, and a map.

= Verbs are action-oriented words/phrases. They are typically commands (like Stop) and
methods (like Err.Raise).

* Nouns are the things being acted upon, the data. They can be variables in memory, controls
on a window, and rows in a table.

= The map is the sequence of processing, the sequence of the verb-noun statements. A street
map provides a useful analogy to the ways in which a person moves through a landscape.
You can go in a straight line, block after block. You can approach an intersection and decide
which way to turn. You can go around the block looking for a parking space. You can stop at
various points along the way.

And then there are the supporting players:

= Data types. Nouns have a data type. Example: integer, character text, date, array. There is
also a user-defined type (UDF) which is akin to a record (or control block) definition
composed of several data elements of differing types.

= Expressions. Nouns are commonly referred to as expressions. An expression can also
include one or more functions that alter the underlying data element(s).

= Operators. These are used to set the value of a noun and to compare the values of two
nouns.

VB can interact with a Component Object Model (COM): it can apply the model’s methods.

A VB program can be either a sub (subroutine) or function. Functions typically return a value or
an object. VB can be used to create a COM.

Constants

Objects and APIs often use constants to control their actions or represent the results of their
actions. Their use provide meaningful names and enhances the readability of code. Each
constant is declared individually like:

Private Const SV_TYPE_DOMAIN_CTRL As Long = &H8 “ this is VB code
Global Const $SV_TYPE_DOMAIN_CTRL = 0x00000008 “ this is C code
Revision: 3/18/2012 Page 2 of 111

Copyright 2001-2012 by Susan J. Dorey

The & character placed after a numeric constant indicates it is a Long Integer type. The &H
characters placed before a numeric constant, indicates the following characters are interpreted as
Hex (Basel6).

A Long element is a 32-bit (4-byte) number.

Enumerated Data Type

The command Enum establishes the relationship between several constants, it establishes the set
of values as a domain. Enum groups several values of a variable into a single variable
declaration. (This is like the 88-levels in COBOL.) All Enum variables are of type Long.

There are two forms of enumerated data types. One groups several values of a variable into a
single variable declaration, like:

Enum EmpType

Contract = 0O
Hourly = 1
Salaried = 2
Temp = 3

End Enum

The second form enumerates constants, like:

Private Const SV_TYPE_DOMAIN_CTRL As Long = &H8
Private Enum ServerTypes

tyWorkstation = SV_TYPE_WORKSTATION

tyServer= SV_TYPE_SERVER

tySql = SV_TYPE_SQLSERVER

tyDomainCtrl = SV_TYPE_DOMAIN_CTRL

End Enum

You don’t have to assign values to one or more of the elements as the compiler will do that for
you. Accordingly, the second form is the equivalent of the first:

Enum EmpType Enum EmpType
Contract Contract = 0
Hourly Hourly = 1
Salaried Salaried = 2
Temp Temp = 3

End Enum End Enum

You use the Enum type by declaring a variable as that type:
Dim EmployeeType As EmpType

Whenever a procedure accepts a limited set of variables, consider using an enumeration.
VB employs a number of built-in enumerations. Examples: DateFormat (has members like

vbShortDate, vbGeneralDate) and MsgBoxStyle (has members like vbOKOnly, vbOKCancel,
vbQuestion).

Revision: 3/18/2012 Page 3 of 111
Copyright 2001-2012 by Susan J. Dorey

Bit Masks
A bit mask is a form of a structure where there are multiple conditions whose values are binary.
A simple example: a one-byte bit mask. This one byte can hold the values of 7 mutually-exclusive

conditions. The lowest seven bits of the 8-bit byte each hold the binary value of one of the
conditions.

[8 [7 [6 5[4 [3]2]1]

The above table represents an 8-bit byte. The bits are numbered from the right. In this simple
example

Bit 1 holds the value of Condition 1 as 0 or 1 (no or yes).

Bit 2 holds the value of Condition 2 as 0 or 1 (no or yes).

Bit 7 holds the value of Condition 7 as 0 or 1 (no or yes).
Bit 8 is not used.

The decimal value of a binary number can be calculated by summing the decimal equivalent of
each bit:

Bit 1, if on, =2 to the power of 0, or 1

Bit 2, if on, =2 to the power of 1, or 2

Bit 3, if on, =2 to the power of 2, or 4

Bit 4, if on, =2 to the power of 3, or 8

Bit 5, if on, =2 to the power of 4, or 16

Bit 6, if on, =2 to the power of 5, or 32

Bit 7, if on, =2 to the power of 6, or 64

If the even-numbered conditions have a value of “yes” and the odd-numbered conditions have a
value of “no” then the byte has a binary value of:

00101010
which has a decimal (base 10) value of 42. The 42 is calculated by summing the decimal
equivalent of the bits with a value of 1: from the right, 2 + 8 + 32 = 42.

Intrinsic Constants (the built-in VB enumerated constants) are bit masks—where each position is
off or on, no or yes, and correlates to a specific condition. A bit mask allows multiple conditions
to co-exist.

Use an enumeration type to hold the various conditions. Declare one enumeration variable to
hold each condition with a value, without using duplicates, that is a power of 2. (Using any other
number can lead to confusing and incorrect results!) Size the enumeration type to hold the range
of values of its members.

Create a variable as the enumeration type. This is the variable that holds the data as a bit mask.

There are several techniques which you use to manipulate a bit mask. The basic tasks you will
need to do are:

1. Set the value of a bit to correspond to a particular condition.

2. Determine the value of a particular condition held in a bit mask.

Revision: 3/18/2012 Page 4 of 111
Copyright 2001-2012 by Susan J. Dorey

3. Determine all the “yes” conditions in a bit mask.

Use the binary operators to set a value and determine the value of the bit mask:
To set a “yes” (1) value, use the Or operator.
To set a “no” (0) value, use the Xor operator.
To determine the value, use the And operator.

Examples will illustrate the techniques. A bit mask is used to hold the multiple-choice answers to
a question. The question has 4 choices and can have zero, one, or more answers.

' Create an enum for the answers. The values are expressed as decimals.
Private Enum AnswerEnum
NoAnswer=0 'all bits are 0

A=1 ' same as 2”0, the first bitis 1

B=2 'same as 2”1, the second bit is 1

C=4 'same as 22, the third bitis 1

D=8 "same as 2”3, the fourth bitis 1
End Enum

" Create a variable as the type of the enumeration and with an initial value,
" the variable is a bit mask

Dim Answer As AnswerEnum = AnswerEnum.NoAnswer

" if condition 1 is true, then set its bit to 1
Answer = (Answer Or AnswerEnum._A)

" if condition 1 is false, then set its bit to O
Answer = (Answer Xor AnswerEnum.A)

" set two bits on at once

Answer = (Answer Or AnswerEnum.A Or AnswerEnum.C)

" determine if a condition is true

IT (Answer And AnswerEnum.A) Then * A is true
Else " A is false
End If

" determine which conditions are true

Dim s As String = "The answers you selected are: ™
IT (Answer And AnswerEnum.A) Then s = s & "A, "

IT (Answer And AnswerEnum.B) Then s = s & "B, ™

IT (Answer And AnswerEnum.C) Then s = s & "C, ™

IT (Answer And AnswerEnum.D) Then s = s & "D, ™

IT Answer = AnswerEnum.NoAnswer Then s = "No Answer™

Empty Fields

Important Use the IsNull function to determine whether an expression contains a Null value.
Expressions that you might expect to evaluate to True under some circumstances, such as If Var =
Null and If Var <> Null, are always False. This is because any expression containing a Null is
itself Null and, therefore, False.

Revision: 3/18/2012 Page 5 of 111
Copyright 2001-2012 by Susan J. Dorey

The Null character is Chr(0).

String data types cannot be Null. If you are writing a VBA procedure with an input argument
that may be Null, you must declare its data type as Variant. If it is declared as String and the
actual value is Null, you will get a type conversion error. In a SELECT SQL statement, the field
will be populated with “4ERROR”.

Application Documentation

Report Database Objects

This is done with VB code in a module. It reads the DAO object model and writes information to
an Information table (where it is available permanently). The code can be run manually or by a
macro. Example:

Function Savelnformation(strSubject As String, strText As String)
" Create Information record

Dim rstinfo As Recordset

Set rstinfo = DBEngine.Workspaces(0) .Databases(0) .0OpenRecordset("Information",
dbOpenTable)

rstinfo.AddNew

rstinfo![Info Date-Time] = Now()

rstinfo![Subject] = strSubject

rstinfol[Information] = strText

rstinfo.Update

rstinfo.Close

Savelnformation = True

End Function

Function ListGroups()
Dim wksSession As Workspace
Dim grpltem As Group
Dim strName As String, X As String
Set wksSession = DBEngine.Workspaces(0)
For Each grpltem In wksSession.Groups
strName = grpltem.Name
x = Savelnformation("'Group", strName)
Next grpltem
ListGroups = True
End Function

Function ListObjects(Q)
ListTablesInContainer
ListTables
ListQueries

ListForms

ListReports
ListMacros
ListModules

ListUsers

ListObjects = True
End Function

Revision: 3/18/2012 Page 6 of 111
Copyright 2001-2012 by Susan J. Dorey

Function ListTablesInContainer()
Dim conTable As Container
Dim docltem As Document
Dim strName As String, strOwner As String, strText As String, X As String
Set conTable = DBEngine.Workspaces(0).Databases(0).Containers!Tables
For Each docltem In conTable.Documents
strName = docltem.Name
strOwner = docltem.Owner
strText = "Name: " & strName & ', Owner: " & strOwner
x = Savelnformation(""Object: Table/Query", strText)
Next docltem
ListTablesInContainer = True
End Function

Function ListTables()
Dim tdfltem As TableDef
Dim strName As String, strOwner As String, strText As String, X As String
For Each tdfltem In DBEngine.Workspaces(0).Databases(0).TableDefs
strName = tdfltem.Name
strText = ""Name: " & strName
x = Savelnformation("'Object: TableDef", strText)
Next tdfltem
ListTables = True
End Function

Function ListQueries(Q)
Dim qdfltem As QueryDef
Dim strName As String, strText As String, X As String
Dim strType As String, strUpdatable As String
Dim strUserName As String
strUserName = GetUserName()
For Each qgdfltem In DBEngine.Workspaces(0) .Databases(0).QueryDefs
strName = qdfltem.Name
strType = QueryDefType(qdfltem.Type)
strUpdatable = qdfltem.Updatable
strText = "Name: " & strName & ", Type: " & strType & ', Updatable for user
" & strUserName & "': "™ & strUpdatable
X = Savelnformation('Object: QueryDef", strText)
Next qdfltem
ListQueries = True
End Function

Function ListForms()
Dim conForm As Container
Dim docltem As Document
Dim strName As String, strOwner As String, strText As String, X As String,
strData As String
Dim num As Integer
Set conForm = DBEngine.Workspaces(0).Databases(0).Containers!Forms
For Each docltem In conForm.Documents
strName = docltem.Name
strOowner = docltem.Owner
DoCmd.OpenForm strName, acDesign
num = Forms.Count
num = num - 1

Revision: 3/18/2012 Page 7 of 111
Copyright 2001-2012 by Susan J. Dorey

strData = Forms(num).RecordSource
DoCmd.Close acForm, strName, acSaveNo
strText = "Name: " & strName & ", Owner: " & strOwner & ', RecordSource:
& strData
x = Savelnformation(""'Object: Form", strText)
Next docltem
ListForms = True
End Function

Function ListReports()
Dim conReport As Container
Dim docltem As Document
Dim strName As String, strOwner As String, strText As String, X As String
Set conReport = DBEngine.Workspaces(0) .Databases(0).Containers!Reports
For Each docltem In conReport.Documents
strName = docltem.Name
strOwner = docltem.Owner
strText = ""Name: " & strName & ', Owner: " & strOwner
X = Savelnformation(""Object: Report", strText)
Next docltem
ListReports = True
End Function

Function ListModules(Q)
Dim conModule As Container
Dim docltem As Document
Dim strName As String, strOwner As String, strText As String, X As String
Set conModule = DBEngine.Workspaces(0) .Databases(0).Containers!Modules
For Each docltem In conModule.Documents
strName = docltem.Name
strOwner = docltem.Owner
strText = "Name: " & strName & "', Owner: " & strOwner
x = Savelnformation("'Object: Module™™, strText)
Next docltem
ListModules = True
End Function

Function ListMacros()
Dim conScript As Container
Dim docltem As Document
Dim strName As String, strOwner As String, strText As String, X As String
Set conScript = DBEngine._Workspaces(0) .Databases(0).Containers!Scripts
For Each docltem In conScript.Documents
strName = docltem.Name
strOwner = docltem.Owner
strText = "Name: "™ & strName & ', Owner: " & strOwner
x = Savelnformation(*'Object: Macro', strText)
Next docltem
ListMacros = True
End Function

Function QueryDefType(intType As Integer) As String
Select Case intType
Case dbQSelect
QueryDefType = "Select”

Revision: 3/18/2012 Page 8 of 111
Copyright 2001-2012 by Susan J. Dorey

Case dbQAction
QueryDefType = "Action”
Case dbQCrosstab
QueryDefType = "Crosstab"
Case dbQDelete
QueryDefType = "Delete"
Case dbQUpdate
QueryDefType = "Update™
Case dbQAppend
QueryDefType
Case dbQMakeTable
QueryDefType = ""MakeTable"
Case dbQDDL
QueryDefType = "DDL"™
Case dbQSQLPassThrough
QueryDefType = "SQLPassThrough"
Case dbQSetOperation
QueryDefType = "SetOperation”
Case dbQSPTBulk
QueryDefType = "SPTBulk"
End Select
End Function

"Append"’

Function ListContainers()

Dim conltem As Container

Dim strName As String, strOwner As String, strText As String, X As String

For Each conltem In DBEngine._Workspaces(0) .Databases(0).Containers
strName = conltem.Name
strOwner = conltem.Owner
strText = "Container name: " & strName & ", Owner: " & strOwner
X = Savelnformation('Container', strText)

Next conltem

ListContainers = True

End Function

Function ListQuerySQLQ)

Dim gdfltem As QueryDef

Dim strName As String, strText As String, X As String

Dim strType As String, strSQL As String

Dim strUserName As String

strUserName = GetUserName()

For Each qdfltem In DBEngine._Workspaces(0) .Databases(0).QueryDefs
strName = qdfltem.Name
strType = QueryDefType(gdfltem.Type)
strSQL = qgdfltem.SQL
strText = "Name: " & strName & ', Type: " & strType & ", SQL: " & strSQL
x = Savelnformation('Object: QueryDef SQL"™, strText)

Next qdfltem

ListQuerySQL = True

End Function

Report Forms and Controls with Data Source

Sub ListFormControlsWithData()
Dim fao As AccessObject

Revision: 3/18/2012 Page 9 of 111
Copyright 2001-2012 by Susan J. Dorey

Dim frm As Form
Dim ctl As Control
Dim pro As Property
Dim frmWasOpen As Boolean
Dim frmName As String
Dim strText As String
Dim x As String
For Each fao In CurrentProject.AllForms
frmWasOpen = True
ITf fao.lsLoaded = False Then
frmWasOpen = False
DoCmd.OpenForm fao.Name

End If

frmName = fao.Name

Set frm = Forms(frmName)

strText = "Name: " & frmName & ", RecordSource: " & frm.RecordSource

For Each ctl In frm.Controls
Select Case ctl._ControlType
Case acListBox, acTextBox, acSubform
For Each pro In ctl_Properties
If pro.Name = "RowSource'" Or pro.Name = "ControlSource" Or pro.Name
= "SourceObject" Then
strText = strText + vbCrLf & "Control: " & ctl_Name & ", " &
pro.Name & " = " & pro.Value
End If
Next
End Select
Next
X = Savelnformation('Form with Controls", strText)
IT frmWasOpen = False Then DoCmd.Close acForm, frmName
Next
End Sub

Report References

Function ListReferences()
Dim refltem As Reference
Dim strName As String, strKind As String, strText As String, strVersion As
String
Dim strGUID As String, X As String
For Each refltem In References
strName = refltem.Name
strKind = refltem.Kind

strVersion = refltem_Major & "." & refltem_Minor
strGUID = refltem.Guid
strText = "Reference name: " & strName & ", Kind: " & strKind & ', Version:

" & strVersion & ", GUID: " & strGUID
x = Savelnformation(*'Reference", strText)
Next refltem
ListReferences = True
End Function

Report Permissions

This is done with VB code in a module.

Revision: 3/18/2012 Page 10 of 111
Copyright 2001-2012 by Susan J. Dorey

Function ListPermissions()

Dim wksSession As Workspace

Dim conltem As Container

Dim docltem As Document

Dim strGrpName As String, strOwner As String, strText As String, X As String
Dim strContName As String, strPerm As String, strDocName As String

Dim grpltem As Group

Dim strName As String

Set wksSession = DBEngine.Workspaces(0)

For Each conltem In DBEngine.Workspaces(0) .Databases(0).Containers
strContName = conltem.Name
For Each docltem In conltem.Documents
strDocName = docltem.Name
For Each grpltem In wksSession.Groups
strGrpName = grpltem.Name
conltem.UserName = strGrpName
If conltem.Permissions > 0 Then
strPerm = conltem.Permissions

strText = strContName & "': " & strDocName & ', Group = " &
strGrpName & ", Permissions = " & strPerm
x = Savelnformation(''Permissions', strText)
End 1If

Next grpltem
Next docltem
Next conltem

ListPermissions = True
End Function

Report Fields in Tables

= Use table TableField to hold key properties, one record per field. The table has the following
fields:

Field ID autonumber

DateTime date, default value = Now()

TableName text

FieldName text

Type text

Size long integer

= Run code in a module. This uses the DAO object model.
Sub ListFields(Q)

Dim dbs As Database

Dim tdfltem As TableDef
Dim fldltem As Field

Dim strFieldName As String
Dim strTableName As String
Dim strType As String

Dim strSize As String

Dim strText As String

Dim x As String

Set dbs = CurrentDb

For Each tdfltem In dbs.TableDefs

Revision: 3/18/2012 Page 11 of 111
Copyright 2001-2012 by Susan J. Dorey

1T tdfltem.Name
strTableName
For Each fid
strField
strType
strSize

Like "tbIl*" Then

= tdfltem.Name

Item In tdfltem.Fields
Name = fldltem.Name

= FieldType(fldltem.Type)
= fldltem.Size

Call SaveTableField(strTableName, strFieldName, strType, strSize)

Next fldltem
End If
Next tdfltem
End Sub

Function FieldType(i
Select Case intType
Case dbBigint
FieldType =
Case dbBinary
FieldType =
Case dbBoolean
FieldType =
Case dbByte
FieldType
Case dbChar
FieldType
Case dbCurrency
FieldType =
Case dbDate
FieldType =
Case dbDecimal
FieldType
Case dbDouble
FieldType =
Case dbFloat
FieldType
Case dbGUID
FieldType
Case dblnteger
FieldType =
Case dbLong
FieldType =

ntType As Integer) As String

"Big Integer"
“Binary"
"Boolean™
"Byte"
"Char"
"Currency"'
"Date/Time"
"Decimal™’
"Double™
"Float"
"Guid"
"Integer"”

""Long"'

Case dbLongBinary

FieldType =
Case dbMemo
FieldType =
Case dbNumeric
FieldType =
Case dbSingle
FieldType =
Case dbText
FieldType =
Case dbTime
FieldType =
Case dbTimeStamp
FieldType =

Revision: 3/18/2012

“"Long Binary"
""Memo"*
“Numeric"
"Single”
"Text"

"Time"

“"Time Stamp"

Copyright 2001-2012 by Susan J. Dorey

Page 12 of 111

Case dbvarBinary
FieldType = "VarBinary"
Case Else
FieldType = intType
End Select
End Function

Sub SaveTableField(strTableName As String, strFieldName As String, strType As
String, strSize As String)

" Create TableField record

Dim dbs As Database

Set dbs = CurrentDb

Dim rstTF As Recordset

Set rstTF = dbs.OpenRecordset("'TableField)
rstTF.AddNew

rstTF![TableName] = strTableName
rstTFI[FieldName] = strFieldName
rstTFI[Type] = strType

rstTFI[Size] = strSize

rstTF._Update

rstTF._.Close

End Sub

Automation, Formerly OLE Automation

Automation is a technology that allows you to access and operate a separate application. It
provides access to the application’s object model —a hierarchy of objects with properties,
methods, and events. Automation allows applications to expose their unique features to scripting
tools and other applications (like VBA).

OLE Automation commonly refers to access to Microsoft Office applications. ActiveX automation
commonly refers to access to other applications.

A VB class module is a COM interface. A class has properties, methods, and events. One or more
class modules can be compiled as ActiveX DLLs (as COM) or ActiveX EXEs (as DCOM).

In order to access the application’s object model, you must create a programmatic reference to the
class containing the desired properties, methods, and events. This is done in two steps:

1. Declare a local object variable to hold a reference to the object.

2. Assign a reference to the object to the local variable.

There are two ways of doing this:

Revision: 3/18/2012 Page 13 of 111
Copyright 2001-2012 by Susan J. Dorey

Late Binding (at runtime) Early Binding (at compile time)

Dim objVar As Object add object reference with References dialog
Set objvar = box

CreateObject(“Word.Application™) Dim objDoc As Document
Set objDoc = Word.Document
or
Dim objDoc As New Document

While early binding is considered more efficient, it relies on the user setting an object reference
on the computer with the References dialog box. If this is not practicable, perhaps because the
code will be distributed to users who may not be able to so set the object reference, then the late
binding method is a workable alternative. Because late binding does not support the enumeration
of constants, you will have to define any required constants in your code. Late binding is
generally preferred for code that will be portable.

The CreateObject function has one argument, the object name. This is the object’s class name
qualified with the component name, and is version-independent. There are valid OLE program
identifiers (Progld) for Microsoft Office applications, ActiveX controls (like Forms.CheckBox.1),
and Microsoft Office web components. There are others for other registered objects, like
Scripting.FileSystemObject. (The ProgID of the registered component-class is in the Windows
registry under the HKEY-CLASSES-ROQT key. Registered objects are listed in the VBIDE
References dialog box.)

An API is different from a COM object, although both are commonly packaged in a DLL. A
procedure, either a function or subroutine, in an API can be executed by a different program after
declaring it; this is commonly called an API call. VB has a Declare statement that is used in a
module’s Declaration section to declare a reference to a procedure in a DLL:
Private Declare Function GetTempPath Lib "kernel32" _

Alias "GetTempPathA™ (ByVal nBufferLength As Long, _

ByVal IpBuffer As String) As Long
After the function is declared, its alias is executed:
strPath = GetTempPathA(IngBufLen, strBuffer)

The Lib name can include an optional path; if it is omitted, VB searches for it. If the external
library is one of the major Windows system DLL:s (like kernel32.dll) the Lib name can consist of
only the root filename (without the extension).

The Declare statement is commonly used to access procedures in the Win32 APL

Background

Automation involves a number of Microsoft technologies:

= Component Object Model (COM) is a binary-interface standard for software componentry
introduced in 1993. It is used to enable interprocess communication and dynamic object
creation in a large range of programming languages. The term COM is often used in the
software development industry as an umbrella term that encompasses the OLE, OLE

Automation, ActiveX, COM*, and DCOM technologies. For well-authored components,
COM allows reuse of objects with no knowledge of their internal implementation, as it

Revision: 3/18/2012 Page 14 of 111
Copyright 2001-2012 by Susan J. Dorey

forces component implementers to provide well-defined interfaces that are separate from
the implementation.

= Object Linking and Embedding (OLE) is a technology that allows embedding and linking to
documents and other objects. It encompasses OLE Control eXtension (OCX), a way to
develop and use custom user interface elements. OLE objects and containers are
implemented on top of the Component Object Model; they are objects that can implement
interfaces to export their functionality.

= ActiveXis a framework for defining reusable software components that perform a particular
function or a set of functions in Microsoft Windows in a way that is independent of the
programming language used to implement them. A software application can then be
composed from one or more of these components in order to provide its functionality. It was
introduced in 1996 by Microsoft as a development of COM and OLE.

= Object library is a file, usually a DLL or OCX, that contains the code for the object. In
Windows, ActiveX components are registered (in the Registry) with their id and location, so
they can be found at runtime.

* Dynamic link library (DLL) contains subroutines (procedures) that are loaded into memory
for use by an application program at runtime (late binding), rather than linking them in at
compile time (early binding); the subroutines remain as separate files on disk.

= Type library contains type information, help file names and contexts, and function-specific
documentation strings which can be used by other programs; type information is the
Automation standard for describing the objects, properties, and methods exposed by the
ActiveX component. A type library is created by the Microsoft Interface Definition Language
(MIDL) compiler. The type library can be stored either as a standalone .tlb file or inside the
object library (.dll file). Most ActiveX components create type libraries. Access to type
information is available at both compile time and run time.

An ActiveX component must have a type library for each set of exposed objects in order to
support early binding (at compile time). Exposed objects that support VIBL binding must be
described in a type library; there is a second binding method which apparently does not need a
type library.

Tools and applications that expose type information must register the information so that it is
available to type browsers and programming tools. That is to say type libraries can be registered
on your computer.

ActiveX components (with or without a type library) can be registered on your computer, after
which they are available to the VBIDE References dialog. Each class in the component is
registered with a Progld and CLSID. You can manually register an ActiveX component (ActiveX -
components are designed to be self-registering—they contain information that Windows can
write to the Registry using program RegSvr32.exe). In the Run dialog box, type “RegSvr32” then
select the DLL and drag it to the text box. You can also use the [Browse] tool of the References
dialog box to find and register an object or type library.

Revision: 3/18/2012 Page 15 of 111
Copyright 2001-2012 by Susan J. Dorey

ActiveX involves components, objects, and clients. The following discussion attempts to define

these in a non-circular way.

= The point of ActiveX is to expose objects of one application so that they can be used by other
programs.

= The exposed objects are called ActiveX objects.

= A group of exposed objects published as one file is called an ActiveX server. This is likely an
obsolete term, ActiveX component seems to be the current name.

= Programs that access those objects are called ActiveX clients.

= ActiveX components are physical files (for example, .exe and .dll files) that contain classes,
which are definitions of objects. Type information describes the exposed objects, and can be
used by ActiveX components at either compile time or at run time.

= A type library is a file or part of a file that describes the type of one or more ActiveX objects.
Type libraries do not store objects; they store type information. By accessing a type library,
applications and browsers can determine the characteristics of an object, such as the
interfaces supported by the object and the names and addresses of the members of each
interface. A member (?) can also be invoked through a type library.

Visual Basic is an ActiveX client. You can use Visual Basic and similar programming tools to
create packaged scripts that access Automation objects.

Interact with Word

Automation

See “Excel, Using Automation” for an introduction to the methods of accessing an Office
application like Word or Excel and a discussion of early and late binding. I admit to still not
understanding this well as behavior I have observed is at odds with things I have read.

There are two ways to define a variable for accessing Word documents:
Dim appWD As Word.Application
Dim appWD As Object

The second way is necessary if you haven't set a reference to the Microsoft Word type library; the
code runs more slowly.

From an Access database you can interact with a Word document.
Dim MyDoc as Object

Set MyDoc = GetObject(URL)

"MyDoc.Activate

from here is just like in Word, for example:
MyDoc.TrackRevisions = False

MyDoc.Save
MyDoc.Close

GetObject works if Word is already running? Yes, then you can see Word running as a process in
Task Manager but not as an application.

Revision: 3/18/2012 Page 16 of 111
Copyright 2001-2012 by Susan J. Dorey

Does this need a reference? Yes, to Microsoft Word Objects.

When Word is running as a process and not an application, MyDoc.ActiveWindow.View.Type =
wdPrintPreview is invalid. Instead you must use wdPrintView. When Word is running as an
application, wdPrintView is invalid and wdPrintPreview is valid.

How to tell if Word is running as an application? An error will occur if you try to get an instance
and there is none.

Dim objWord As Word.Application
On Error Resume Next
Set objWord = GetObject(, “Word.Application’)
I objWord Is Nothing Then
Set objWord = CreateObject(“Word.Application™)
End IFf
On Error GoTo O “ reset error handling

The following code opens a new instance of Word in every case:
Set appWD = CreateObject(“Word.Application™)

If Word was not open before you start an instance, close it when you are done:
appWD.Quit

It might be simpler to always open a new instance of Word and then close it at the end.

Visible

For any object, some methods and properties may be unavailable if the Visible property is False.
But I do not know what that is for the Application object. When the application is visible, it
appears in the Task Bar; when it is invisible, it does not appear in the Task Bar but it does appear
as a process in Task Manager.

Binding
GetObject is a function that invokes “late binding.” GetObject uses an existing running instance
of the native application, CreateObject creates a new instance. In this example, the URL
references a Word document (because of its file extension), so the native application that is used
is Word. If the URL was an XLS file, then Outlook would open. Apparently these two functions
work a little different in each Office program.

There is a problem with GetObject when the native application is not running.

“Binding” means exposing the client object model to the host application. In this example, that
means exposing the Word object model to the application in VBA for Access. Word’s object
model is stored in an OLB (Object Library) file. Binding the OLB to the Access application is
what exposes the object model.

Late binding can also be done:
Dim wdApp as Object
Set wdApp = GetObject(, “Word.Application™)

Revision: 3/18/2012 Page 17 of 111
Copyright 2001-2012 by Susan J. Dorey

Setting a Reference with the VBE Tools, References menu establishes early binding. If early
binding is used, then the VBA code is:

Dim wdApp As Word.Application

Set wdApp = New Word._Application

Handling Read-Only Documents

Use GetAttr and SetAttr as described later on. I do not know a reliable method of trapping the
opening of files that prompt the user for either a password or to open as read-only. The
attributes accessed by GetAttr and SetAttr are the file attributes, not the internal Word document
settings.

Field Codes

I'm putting these notes here as a placeholder. I wrote VBA code to unlink and delete some date
field codes for a group of files one at a time. The code worked when run from Word but had a
type error when run from Access. This is still a mystery. The simple solution is to create a
module in Word’s global template and run it under Word.

Interact with Excel
Excel objects can be manipulated with Visual Basic and from within an Access database.

A Microsoft Excel workbook is a file that contains one or more worksheets, which you can use to
organize various kinds of related information.

Using Automation

Automation (formerly OLE automation) is a feature of the COM whereby applications expose
their objects to other applications that support Automation. Visual Basic can access these objects
through an Automation object.

The automation object must first be defined, then instantiated (an instance of it is created). This is
done with the Dim and Set statements respectively. When you are through with the object, it
must be removed from memory (sometimes called destroyed).

When you work with Excel objects from Access, or any other Office application, you must first
create an object variable representing the Excel Application object. This is known as an explicit
reference to the object.

You use an OLE programmatic identifier (sometimes called a ProgID) to create an Automation
object. There are several approaches:

= To create an Excel application object with early binding, the identifier is Excel. Application.
This is the preferred approach; performance is significantly faster with early binding than
with late binding. It uses the ActiveX approach. There is a problem here: The Microsoft
Excel 9.0 Object Library ActiveX control does not close the spreadsheet file as described in
several books, MSDN or the online help file examples. In order to be able to close the file,

you must use thevariable type Object to control Excel.
Dim xIApp As Excel _Application
Set xIApp = New Excel_Application

Revision: 3/18/2012 Page 18 of 111
Copyright 2001-2012 by Susan J. Dorey

= To create an Excel application object with late binding, the identifier is Excel. Application.
This technique is required if you haven't set a reference to the Microsoft Excel type library.
And it allows you to close the Excel process when you are done.
Dim xIApp As Object
Set xIApp = CreateObject("Excel .Application™)

= To return a workbook, the identifier is Excel. Workbook. This assumes the application object
has already been created.
Dim MyWbk As Excel .Workbook
Set MyWbk = Xx1App.Workbooks.Open(Ffilespec)

= To return a workbook with one worksheet, the identifier is Excel.Sheet. Excel runs as a
process, as opposed to an application (you can see it running in Task Manager), if no
application object has been created.

Dim MyWbk As Object
Set MyWbk = CreateObject("Excel.Sheet')

= To create a workbook object based on an existing XLS file, use the GetObject method. Excel
runs as a process, as opposed to an application (you can see it running in Task Manager), if
no application object has been created.
Dim MyWbk As Object
Set MyWbk = GetObject(filespec)

The following example creates a Microsoft Excel workbook object in another application, like
Access, and then opens a workbook in Microsoft Excel.

Set MyWbk = CreateObject("Excel.Sheet')

MyWbk .Application.Workbooks.Open ""newbook.xls"

When you are done:
Set xlApp = Nothing " critical for the application object
Set MyWbk = Nothing " not necessary when the workbook is closed

If you work with Excel objects without the application object, you may have problems. For
instance, you may be unable to open the XLS file after editing it.

* You can start an Excel application conditionally —only if one is not currently running.
Const ERR_APP_NOTRUNNING As Long = 429
On Error Resume Next
Set xIApp = GetObject(, "Excel ._Application')
IT Err = ERR_APP_NOTRUNNING Then
Set xIApp = New Excel.Application
End 1If

= In the following sample, an Excel file is edited and saved with a different name. This is done
with the Application object.
Sub AutomateExcel ()
" This procedure is a brief sample showing how to automate Excel.
" Remember to set a reference to the most current available
" Microsoft Excel object library.
" Declare object variables.
Dim appXL As Excel _Application
Dim wrkFile As Workbooks
" Set object variables.
Set appXL = New Excel_Application
Set wrkFile = appXIl .Workbooks

Revision: 3/18/2012 Page 19 of 111
Copyright 2001-2012 by Susan J. Dorey

" Open one Excel file.

wrkFile.Open "c:\data\abc.xlIs"

" Display Excel (optional)

appXL.Visible = True

MsgBox At this point Excel is open and displays a document."” & Chr$(13) &

"The following statements will close the document and then close Excel."
" Close the file.

wrkFile.Close

" Quit Excel.

appXL.Quit

" Close the object references.

Set wrkFile = Nothing

Set appXL = Nothing

End Sub

= The following example suggests a different approach:
Sub OLEAutomation(LateBinding)
Dim oApp As Object " late binding
Dim oDoc As Object * late binding
On Error Resume Next " ignore errors
Set oApp = GetObject(, "Excel_Application™)
" reference an existing application instance
IT oApp Is Nothing Then " no existing application is running
Set oApp = CreateObject(*'Excel _Application')
" create a new application instance

End IFf

On Error GoTo O " resume normal error handling

IT oApp Is Nothing Then " not able to create the application
MsgBox "The application is not available!", vbExclamation

End IT

With oApp

Visible = True make the application object visible
" at this point the application is visible

* do something depending on the application...

Set oDoc = .Documents.Open(‘c:\foldername\filename.doc'")

" open a document

oDoc.Close True close and save the document

Quit " close the application
End With
Set oDoc = Nothing " free memory
Set oApp = Nothing " free memory

End Sub

= Do you want the application object to be visible to the user? When it is visible, it's window
appears on the Windows Desktop. By default an application object is not visible. You can
change that with the Visible property:
Set oApp.Visible = True

Accessing Workbooks
= Open workbook with Workbooks object where MyWbk is a workbook object:

Revision: 3/18/2012 Page 20 of 111
Copyright 2001-2012 by Susan J. Dorey

Dim MyWbk as Excel .Workbook

Dim libpath, filespec

libpath = "c:\Data\Library\"

filespec = libpath + "catalog.xIs"

Set wbk = xl1App.Workbooks.Open(filespec)

= Activates the first window associated with the workbook:
MyWbk .Activate

= Save workbook:
MyWbk .Application.Workbooks(1).Save
ActiveWorkbook. Save
Workbooks (1) . Save
MyApp -Workbooks (1) . Save

= Close the active workbook and saves any changes
ActiveWorkbook.Close True

= Close all open workbooks:
MyWbk . Application._Workbooks.Close
MyApp -Workbooks._.Close

= The user can select a file to open with the standard File Open dialog box.
Set TestXLOpenDialog()
" this works! It doesn"t just get the file name, it actually opens it.
Dim appXL As Excel.Application
Set appXL = New Excel_.Application
Dim r
T = appXL.Dialogs(xIDialogOpen).show(*'c:\data\html'")
If r = False Then MsgBox "File open cancelled"
End Sub

= After editing an Excel file, you may want to save it with a different name.
appXL.ActiveWorkbook.SaveAs Filename:= _
txtNewfile, FileFormat:=x1Excel9795, _
Password:=""", WriteResPassword:="", ReadOnlyRecommended:=False, _
CreateBackup:=False
Unfortunately, Excel will display a “are you sure” message box when a file of the save-as name
already exists; the box has [Yes], [No], and [Cancel] buttons. The box can be suppressed by one
line of code immediately before the Save As:
appXL.DisplayAlerts = False
It's a good idea to reset it to True immediately afterwards.

Refer to Cells

= Refer to cells and ranges using the A1l notation. Columns are lettered from A, rows are
numbered from 1. Column AA follows Z.
A10 the cell in column A, row 10
A10:A20 range of cells in column A, rows 10 through 20
B15:E15 range of cells in row 15, columns B through E
Al:B5 range of cells Al through B5

A:C the cells in columns A through C
5:5 all cells in row 5
H:H all cells in column H

1:1,3:3,8:8 all cellsinrows 1, 3, and 8

Revision: 3/18/2012 Page 21 of 111
Copyright 2001-2012 by Susan J. Dorey

= The Range collection represents a cell, a row, a column, a selection of cells containing one or
more contiguous blocks of cells, or a 3-D range. The Range property returns a Range object:
Worksheets("'Sheetl') _.Range(*'A5") .Value = “5”
Dim a As Long
a = myWbk._Worksheets(0) -Rows.Count
myWbk .Worksheets(0) .Range(f & “:” & a)-EntireRow.Hidden = True
myWbk .Worksheets(1) -Range(*'S: IV"") .EntireColumn_Hidden = True

= Refer to cells with index numbers using the Cells property. Cells uses the (R, C) notation,
which is akin to a 1-based index.
1,1 A1 (cell in first column and first row)
53 c5
Cells(1, 1)

= The Cells property returns a Range object:
Worksheets(1).Cells(1, 1).Value = 24
Worksheets(1) .Cells “all cells
Worksheets(1) .Range(*'C5:C10™) .Cells(1, 1).Formula = "=Rand()"

= Refer to entire rows and columns using the corresponding properties.

Reference Meaning

Rows(1) Row one

Rows All the rows on the worksheet
Columns(1) Column one

Columns("A") Column one

Columns All the columns on the worksheet

Worksheets(1) .Rows(1) .Font.Bold = True

= This example sets the font and font size for every cell on Sheet] to 8-point Arial:
With Worksheets(*'Sheetl™) _Cells.Font
-Name = "Arial”
.Size = 8
End With

= The EntireRow property returns a Range object that represents the entire row (or rows) that
contains the specified range.

* You can refer to the Al notation by specifying a row number and a variable. In this case the
Intersect method returns a Range object that represents the rectangular intersection of two or
more ranges.

Intersect(Rows(*'2:" & Rows.Count), Range("e:e'").SpecialCells(xIBlanks, _
xITextValues)) .EntireRow._Delete

= Although you can also use Range ("A1") to return cell A1, there may be times when the

Cells property is more convenient because you can use a variable for the row or column. The
following example creates column and row headings on Sheetl. Notice that after the
worksheet has been activated, the Cells property can be used without an explicit sheet
declaration (it returns a cell on the active sheet).
Worksheets("'Sheetl™) .Activate
For TheYear = 1 To 5

Cells(1, TheYear + 1)_.Value = 1990 + TheYear
Next TheYear
For TheQuarter = 1 To 4

Cells(TheQuarter + 1, 1).Value = "Q" & TheQuarter

Revision: 3/18/2012 Page 22 of 111
Copyright 2001-2012 by Susan J. Dorey

Next TheQuarter

Although you could use Visual Basic string functions to alter Al-style references, it's much
easier (and much better programming practice) to use the Cells(1, 1) notation.

The Rows property returns a Range object
reccnt = object_Rows

Object Result

Application all the rows on the active worksheet
Range all the rows in the specified range
Worksheet all the rows on the specified worksheet

Manipulating an Excel File

While Excel is open with one file you can perform a variety of actions.

Count all rows in active worksheet:
x1App -Rows.Count

The following example hides a named column and edits a column heading

" next line hides the named column

Range("'K1'™) .EntireColumn.Hidden = True

" next 3 lines edit the text of a cell (in this case a column heading)

Range(*'M1') .Select "text in heading row invalid for

import

ActiveCell .Replace What:="/", Replacement:=""", LookAt:=xlIPart, _
SearchOrder:=xIByRows, MatchCase:=False

Cells.Find(What:="/", After:=ActiveCell, LookIn:=xIFormulas, LookAt:= _
xIPart, SearchOrder:=xIByRows, SearchDirection:=xINext,
MatchCase:=False) .Activate

" next line toggles AutoFilter, which must be off to delete a column; but

it is not enough

IT appXL.ActiveSheet.AutoFilterMode = True Then _
appXL.Activesheet._AutoFileterMode = False

appXL.ActiveSheet.Range("'A:F') .Autofilter

" next 2 lines delete named columns
appXL.ActiveSheet._Columns(""A:F'") .Select
appXL.ActiveSheet._Selection.Delete Shift:=xIToLeft

Set row 1 values as column headings which will print on each page.

File, Page Setup “Sheet” tab, “Rows to repeat at top” = $1:$1

also set “Print Gridlines” = yes, “Print row and column headings” = yes.

This is done in Visual Basic with the PageSetup object which is a sub-object of the Worksheet
object.

Sub InitWorksheet()

Dim MyWbk As Object

Set MyWbk = CreateObject("'Excel.Sheet')
Dim libpath, Ffilespec

libpath = "c:\Data\Library\"

filespec = libpath + "catalog.xIs"

MyWbk .Application._Workbooks.Open filespec

Revision: 3/18/2012 Page 23 of 111
Copyright 2001-2012 by Susan J. Dorey

With MyWbk.?.PageSetup
PrintTitleRows = "$1:$1"
-PrintTitleColumns = "'
.LeftHeader = """
.CenterHeader = _
"&""Verdana,Bold'""&1l1leBusiness Product Documentation Library Catalog"
.RightHeader = """
.LeftFooter = "&""Arial,Regular'"&8&Z&F"
.CenterFooter = "'
.RightFooter = "&""Arial,Regular'"&8Page &P of &N"
End With
MyWbk .ActiveSheet.PageSetup.PrintArea = "
With MyWbk.ActiveSheet.PageSetup
.PrintHeadings = True
-PrintGridlines = True
End With
End Sub

= Loop through a range of cells using Range object:
For Each c In Worksheets("'Catalog").Range(''G:G")
[do something]
Next

= There are methods that refer to cells such as SpecialCells, a method that applies to a Range
collection and returns a Range object of cells that match the criteria (specified type and
value). The syntax is:
Range object expression.SpecialCells(typel[, value]).
The XICellType constants are:

xICellTypeAllFormatConditions Cells of any format
xICellTypeAllValidation Cells having validation criteria
xlCellTypeBlanks Empty cells

xICellTypeComments Cells containing notes
xICellTypeConstants Cells containing constants
xlCellTypeFormulas Cells containing formulas
xICellTypeLastCell The last cell in the used range
xlCellTypeSameFormatConditions Cells having the same format
xlCellTypeSameValidation Cells having the same validation criteria

Range("'A3') .Select

Range(Selection, ActiveCell_SpecialCells(xlLastCell)) _Select
Range(*'A4:A1220") .Select

Range(Selection, ActiveCell_SpecialCells(xlLastCell)) _Select
Range('A5™) .Select

Range(*'A5:A1867"") .Select

Selection.EntireRow.Delete

Sub Activate_Selection_Lastcell()

" Get the number of rows of the selection.
RowCount = Selection.Rows.Count

" Get the number of columns of the selection.
ColumnCount = Selection.Columns.Count

" Activate the last cell of the selection.
Selection.Cells(RowCount, ColumnCount) _.Activate

Revision: 3/18/2012 Page 24 of 111
Copyright 2001-2012 by Susan J. Dorey

End Sub

Sub leave_header()

Dim header As Long

header = 1

ActiveSheet.Rows(header + 1 & '":65536").Clear
End Sub

There is a problem deleting empty rows at the end of a worksheet. I cannot get it to happen.
When I delete the rows, they reappear.

Delete empty rows. Deleting one row at a time can be slow. This method uses the CountA
worksheet function to test for empty rows and Selection.Rows.Count to expose the
worksheet row count. But right now it doesn’t work because the row count = 1.
Sub DeleteEmptyRows()
libpath = "c:\Data\Library\"
filename = "catalog.xlIs"
filespec = libpath + filename
Set xIApp = New Excel_.Application
Xx1App .Workbooks.Open filespec
Dim i As Long "use Long in case there are over 32,767 rows selected.
With x1App

" work backwards because we are deleting rows.

" CountA function counts the number of cells that are not empty

For 1 = _Selection.Rows.Count To 1 Step -1

IT _WorksheetFunction.CountA(Selection.Rows(i)) = 0 Then
-Selection.Rows(i).EntireRow.Delete
End If

Next i
End With
x1App .Workbooks (1) - Save
x1App .Workbooks.Close
XIApp.Quit
Set x1App = Nothing
End Sub

Delete a range of rows. The property EntireRow returns a Range object.

With myWbk

-Range("*'A5:A10") .EntireRow.Delete

End With

Hide empty rows at the end of a worksheet; a worksheet is created with 65536 rows. Hide
empty columns at right of a worksheet; a worksheet is created with 256 rows, A —IV. The
property EntireRow returns a Range object.

Dim a As Long

a

= myWbk.Worksheets(0) .Rows.Count

myWbk .Worksheets(0) .Range(f & “:” & a).EntireRow.Hidden = True
myWbk .Worksheets(1) .Range(*'S: IV'") .EntireColumn._Hidden = True

Unhide a workbook. I'have found that after creating an XLS file, setting page headers,
hyperlinks, font, hiding empty rows, and saving the file, when it is reopened, the workbook
is hidden.

SetHyperlinks myWbk

Windows(*'catalog.xls™) _Visible = True

unhide workbook

myWbk . Save

Revision: 3/18/2012 Page 25 of 111
Copyright 2001-2012 by Susan J. Dorey

Hyperlinks

= The Hyperlinks collection is a subset of a Range collection or Worksheet object. The
Hyperlinks property returns the Hyperlinks collection. In the following example, each
hyperlink object in the collection is accessed:
For Each h in Worksheets(l).Hyperlinks

= Use the Add method to create a hyperlink and add it to the collection:
expression.Add(Anchor, Address, SubAddress, ScreenTip, TextToDisplay)

expression Required. An expression that returns a Hyperlinks object.

Anchor Required Object. The anchor for the hyperlink. Can be either a Range or
Shape object.

Address Required String. The address of the hyperlink.

SubAddress Optional Variant. The subaddress of the hyperlink.

ScreenTip Optional Variant. The screen tip to be displayed when the mouse pointer

is paused over the hyperlink.
TextToDisplay Optional Variant. The text to be displayed for the hyperlink.

Example for one cell:
With Worksheets(1)

-Hyperlinks.Add .Range (“E57), “http://a.b.com/fn._xlIs”
End With

Example for each cell in a column. Assumes record key in first column and when it becomes
empty there are no more records.
Sub SetHyperlinks(myWbk)
Dim ¢
For Each c In myWbk_Worksheets(1).Range("'H:H'")
IT IsEmpty(c.EntireRow.Cells(1, 1)) Then Exit For
IT Not IsEmpty(c.Value) Then
myWbk .Worksheets(1) .Hyperlinks.Add c, c.Value
End IFf
Next
End Sub

The default hyperlinks are set as relative to the location of the XLS file when it is created. If this
is not what you want, you can set the links as absolutes;

myWbk.Worksheets(1).Hyperlinks.Add c, “file:” + temp
where temp = \ \server\share\ directory\ filename
and c is a cell reference

An XLS file created by exporting an Access table will, for fields with data type Hyperlink, contain
the Access field’s value in the form #full filename#. Which is to say the # signs are visible. They
do not affect the operation of the hyperlink in the XLS file and may be useful if the XLS file is
later imported into an Access table. You can remove the # signs with impunity:

temp = Mid(c.Value, 2, Len(c.Value) - 2)

Excel has a number of problems with hyperlinks. I had a problem with an XLS file I created in

Access with VBA: when the file was used by one user (not all) the hyperlinks changed and

Revision: 3/18/2012 Page 26 of 111
Copyright 2001-2012 by Susan J. Dorey

became unusable. The hyperlinks worked when she first opened the file but not after editing and
saving it.

My original hyperlink had address like (and was constructed with the file protocol):
\ \server\share\ path\filename

Her hyperlinks had address:
..[..[..[../[share/path/filename and embedded spaces were now “%20”

The solution was to set the Hyperlink Base (on Summary tab of the “Properties” dialog box) to
IIC: \ 4 .
Export Access Table to Excel File

DoCmd.TransferSpreadsheet acExport, acSpreadsheetTypeExcel9, Catalog,
“catalog.xls”, True

where
acExport transfer type
acSpreadsheetTypeExcel9 spreadsheet type
Catalog is table being exported (can also be a SELECT query)
“catalog.xls” is Excel file
True means field names are in row 1

The export creates a workbook with one worksheet named “Catalog”.
The same command can be used to import or link; it uses additional arguments.

If you want to export the results of a query that is created dynamically, sy when a WHERE clause
is appended to an existing query, you will first have to save the query as a QueryDef object—if it
does not already exist.

Create Excel Spreadsheet From Access Table
= This example will crash if the database contains OLE fields or GUIDs.

= Initiation

Private Sub cmdLoad_Click()
Dim excel_app As Object
Dim excel_sheet As Object
Dim row As Long

Dim rs As ADODB.Recordset

= Create the Excel application.

Set excel_app = CreateObject("Excel .Application™)
Set excel_sheet = excel_app

Set conn = New ADODB.Connection

conn.Open

= Open the Access database.

Set conn = New ADODB.Connection

conn.ConnectionString = _
"Provider=Microsoft.Jet.OLEDB.4.0;" & _

Revision: 3/18/2012 Page 27 of 111
Copyright 2001-2012 by Susan J. Dorey

"Data Source=" & txtAccessFile.Text & ";" & _
"Persist Security Info=False"
conn.Open

= Select the data.
Set rs = conn.Execute(_
"“"SELECT * FROM Books ORDER BY Title"™, , adCmdText)

= Make the column headers.
For col = 0 To rs.Fields.Count - 1
excel_sheet._Cells(l, col + 1) = rs.Fields(col).Name
Next col

= Get data from the database and insert it into the spreadsheet.
row = 2
Do While Not rs.EOF
For col = 0 To rs.Fields.Count - 1
excel_sheet_Cells(row, col + 1) = _
rs_Fields(col) .Value
Next col

row = row + 1
rs.MoveNext
Loop

= Close the database.
rs.Close
Set rs = Nothing
conn.Close
Set conn = Nothing

= Make the columns autofit the data.
excel_sheet.Range(_
excel_sheet.Cells(1, 1), _
excel_sheet.Cells(1, _
rs.Fields.Count)).Columns.AutoFit

= Make the header bold.
excel_sheet_Rows(1l).Font_Bold = True

= Freeze the header row so it doesn't scroll. NOTE: When I tried this the SELECT failed with

a run-time error.
excel_sheet_Rows(2).Select
excel_app-ActiveWindow.FreezePanes = True

. Select the first cell.
excel_sheet.Cells(1, 1).Select

= Close the workbook saving changes.
excel_app.ActiveWorkbook.Close True
excel_app-Quit

Set excel_sheet = Nothing
Set excel_app = Nothing

Screen.MousePointer = vbDefault
MsgBox "Copied " & Format$(row - 2) & " values."

Revision: 3/18/2012
Copyright 2001-2012 by Susan J. Dorey

Page 28 of 111

End Sub

Another Access to Excel Technique

Open the database and build the Recordset containing the data you want to transfer. Then open
the Excel workbook, find the worksheet that should contain the data, create a Range on the
worksheet, and use its CopyFromRecordset method to load the data. This example also calls
AutoFit to make the column widths fit the data.

Private Sub cmdLoad_Click()

Dim conn As ADODB.Connection

Dim rs As ADODB.Recordset

Dim excel_app As Excel_Application
Dim excel_sheet As Excel .Worksheet

Screen._MousePointer = vbHourglass
DoEvents

" Open the Access database.

Set conn = New ADODB.Connection

conn.ConnectionString = _
"Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=" & txtAccessFile.Text

conn.Open

" Select the Access data.
Set rs = conn.Execute(''Books')

" Create the Excel application.
Set excel_app = CreateObject("Excel .Application™)

" Uncomment this line to make Excel visible.
- excel_app.Visible = True

" Open the Excel workbook.
excel_app.Workbooks.Open txtExcelFile.Text

" Check for later versions.
1T Val(excel _app.Application.Version) >= 8 Then
Set excel_sheet = excel_app.ActiveSheet
Else
Set excel_sheet = excel_app
End IFf

" Use the Recordset to fill the table.
excel_sheet.Cells.CopyFromRecordset rs
excel_sheet.Cells.Columns.AutoFit

" Save the workbook.
excel_app.-ActiveWorkbook.Save

" Shut down.
excel_app-Quit
rs.Close
conn.Close

Revision: 3/18/2012 Page 29 of 111
Copyright 2001-2012 by Susan J. Dorey

Screen.MousePointer = vbDefault
MsgBox 'Ok
End Sub

Import Excel File

You can import Excel files (1) manually with menu File, Get External Data, Import and (2)
programmatically with the DoCmd.TransferSpreadsheet method.

Do.Cmd TransferSpreadsheet aclmport, acSpreadsheetType Excel3, tablename, filename,
hasfieldnames, range

filename includes path.

hasfieldnames is True if first row of spreadsheet has field names, False if not.

range is optional. If provided, only named range of cells is imported. Example: "A1:E3", "A:D",
"A:A, C:D, F:F.” When Excel file is Excel version 5.0, 7.0, 8.0, or 2000 then a particular worksheet
in the range can be specified, e.g., "Budget!A:D" where "Budget" is the worksheet name.

When field names exist in the Excel file (as column h eadings), either you must import into a new
table (which is created by the import), or the table you import into must have the same field
names (and compatible data types?) as the Excel file. This is true for either import method.

Should you get a 2391 run-time error there is a problem with the XLS file—usually a mismatch of
field names. If the message is “Field ‘Fn’ doesn’t exist in destination ‘CandidateFiles” you can
correct this error by creating a new XLS file and pasting into it just the valid rows and columns of
the erroroneous file. If the message is “Field ‘something else” doesn’t exist in destination
‘CandidateFiles’” you must determine which column heading is “something else.” If it should be
a table field name, change the heading to match the field name; otherwise delete the column.

If the table already exists, the spreadsheet data is appended, otherwise a new table is created with
the spreadsheet data. If there is an error because of duplicate keys, an Access error message box
will appear. Any SetWarnings False should follow the TransferSpreadsheet so the users can see
the errors.

Visual Basic Code (in Modules)

Overview

VB code essentially does something with or without conditions. Some code can be executed
iteratively (looping).

Comments

are preceded by a single quote

Doing work

Execute an object’s method/event.

Set an object’s property.

Execute an Access macro action (as a method of the DoCmd object).
Execute an Access menu action (as Application.RunCommand).

Revision: 3/18/2012 Page 30 of 111
Copyright 2001-2012 by Susan J. Dorey

Run a sub procedure.

Data

Can be in a database table.
Can be in a flat file.

Can be a variable.

Can be a property of an object.
Can be the result of a function.

Expressions

Are used to specify a method, event, property, and data value.

An object’s method/event/property is expressed as its name prefixed by the name of the object;
e.g., objectname.methodname.

There are predefined constants.

Looping and Conditions

Binary conditions (by If ... Then ... Else ... End If).
Multiple-choice conditions (by Select Case).

Loop while or until a condition is true (by Do ... Loop).

Repeat code a specific number of times (by For ... Next).

Repeat code for each object in a collection (by For Each ... Next).

Statements with Arguments

There are two ways in which you can write statements with arguments:
DocProps.Add PName
DocProps.Add Name:=Pname

The first format is handy when there is only one argument. When there are several arguments,
they must be in a particular sequence and some may be optional. In this case it can be more self-
documenting to use the second format.

Set References for Object Libraries

= References must be set to reflect objects used in code. The basic references are
Visual Basic for Applications and
Microsoft Access 9.0 Object Library

= If the code uses DAO objects (like Recordsets, TableDefs, QueryDefs, and Error), then the
reference to Microsoft DAO 3.6 Object Library should be third in the list. If not, you might
get “type mismatch” errors on DAO objects.

= If code uses ADO objects (like Err), then you'll need a reference to Microsoft ADO Ext. 2.5
for DDL and Security.

= If code accesses Excel files through Excel (to perhaps edit them), then you'll need two
references:
OLE Automation and
Microsoft Excel 9.0 Object Library.

= What requires a reference to Microsoft ActiveX Data Objects 2.1 Library? Use of said
objects?

Revision: 3/18/2012 Page 31 of 111
Copyright 2001-2012 by Susan J. Dorey

Owner
Underline

= You can set references in the Visual Basic References window (menu Tools, References) or

you can set them in code. The latter seems more portable. I admit I never tried this!
Dim ref As Reference
Set ref = References!Access
Set ref = References.AddFromFile(*'C:\Windows\System\Mscal .ocx"")
The Reference object has several methods.

Procedures

= There are two kinds of procedures: Sub and Function. They can reside in standard modules
and form modules. Sub procedures take some action while Function procedures return a
value.

= General Sub procedure syntax:
Sub DoThis()

End Sub

Function ProcedureName()
ProcedureName = _

DateSerial (Year(Now), Month(Now) + 1, 1)
End Function

= Both Sub and Function procedures can take arguments, such as constants, variables, or
expressions that are passed by a calling procedure. You can determine if an argument was
passed to the procedure by the IsMissing function or the Optional keyword with default
value. Use the IsMissing function to detect whether or not optional Variant arguments have
been provided in calling a procedure; it does not work for simple data types. IsMissing
returns True if no value has been passed for the specified argument; otherwise, it returns
False. Use the Optional keyword to indicate that an argument is not required and in
conjuction with a default value (all following arguments must also be Optional). Test the
value of the argument against the default value to tell if it was present.

Sub ProcedureName(argl As Variant)
If IsMissing(argl) Then . . .

End Sub

Sub ProcedureName(Optional argl As String = “All™)
If argl = “All” Then . . . “ no argument passed

End Sub

= Arguments are passed to procedures by reference unless you specify otherwise. You can
pass an argument by value by using the ByVal keyword. Because ByVal makes a copy of the
argument, it allows you to pass a variant to the procedure. (You can't pass a variant by

reference if the procedure that declares the argument is another data type.)
Sub ProcedureName(ByVal argl As Integer)

= Because functions return values, you can use them in expressions. You can use functions in
expressions in many places in Microsoft Access, including in a Visual Basic statement or
method, in many property settings, or in a criteria expression in a filter or query.

= Sub procedures can be defined in several different ways:
[Private | Public | Friend] [Static] Sub name [(arglist)]
[statements]

Revision: 3/18/2012 Page 32 of 111
Copyright 2001-2012 by Susan J. Dorey

[Exit Sub]

[statements]

End Sub

Public Indicates that the Sub procedure is accessible to all other procedures in all
modules. If used in a module that contains an Option Private statement, the
procedure is not available outside the project. By default, Sub procedures are
public.

Private Indicates that the Sub procedure is accessible only to other procedures in the
module where it is declared.

Friend Used only in class modules

Static Indicates that the Sub procedure's local variables are preserved between calls.

A function procedure can be used in an expression almost anywhere in Microsoft Access.

To use a function as a property setting, the function must be in the form or report, or in a
standard code module. You can't use a function in a class module that isn't associated with a
form or report as a form or report property setting. A function is a handy way to set the value of
a form or report control to a variable; set the value of the Control Source property to “=<function
name>." Be sure the scope of the variable is correct.

Object Model: Collections, Objects, Methods, Properties

The things that VB can manipulate are objects which exist in collections. There are standard
ways of referencing objects:

= as a member of a collection via an index, which can be a literal or variable: Forms(1),
Forms(indexForm)

= as anamed member of a collection: Forms(“Main”)

= members can be enumerated: For Each...Next statements repeat a block of statements for

each object in a collection.
For Each c in Worksheets(*“Catalog”).Range(“G:G™)

Process Control

* Run a procedure (parameters are called “arguments” in Access)

ProcedureName

ProcedureName parameterA, parameterB, . . .

ModuleName . ProcedureName when same-named procedure exists in
several modules

Call ProcedureName

Call ProcedureName(parameterA, parameterB, . . .)
X = FunctionName()

X = FunctionName(parameterA, parameterB, . . .)
X = GetDateLastInterview([JobTitle])

= Run a function procedue whose name is in a string
Application.Run ProcedureName

or

Sub CallString(ProcedureName)

Application.Run ProcedureName

End Sub

Revision: 3/18/2012 Page 33 of 111
Copyright 2001-2012 by Susan J. Dorey

* Run a procedure in a module associated with a subform —when the form is open in Form

view
Forms!MainformName!SubformName.Form.ProcedureName
(this invokes the procedure as a method of the subform)

= Run a macro
DoCmd.RunMacro "*MacroName"

* Run a subroutine within the same procedure
GoTo label

label:

Return

= Stop subroutine/function prematurely
Exit Sub
Exit Function

= Stop procedure/function
Stop “ does not close files or clear variables

End “ closes fTiles, resets all module-level variables, resets all

static local variables in all modules

= Another way to stop a procedure is to force a run-time error. It is messier in that it displays
the run-time error message box in the Visual Basic Editor (which is disconcerting at the

least). See Error Handling on page for details.

= Stop application (MDB)
first close all windows, then
RunCommand acCmdClose

= Stop Access
Application._Quit

= Loop: Do something x number of times.
For counter = start-value To end-value . . . Next [counter]

You could process elements in an array:
Dim Price(5) As Currency
For intCounter = 1 to 5
AveragePrice = AveragePrice + Price(intCounter)
Next
AveragePrice = AveragePrice / 5

Do [While/Until conditon] . . . Loop

Do . . . Loop [While/Until conditon]

For Each element In group . . . Next

For counter = start To end [Step step] - . . Next [counter]
While conditon . . . Wend

You can run a loop backwards (in reverse):

For counter = end To start Step -step] . . . Next [counter]
Example:

For 1 = idxTbl_Rows.Count To 3 Step -1

Revision: 3/18/2012
Copyright 2001-2012 by Susan J. Dorey

Page 34 of 111

idxTbl.Rows(i) .Delete
Next

= Iterate through the members of a group. This could be objects in a collection or elements in
an array.

For Each element In group . . . Next

When the element in the For Each statement is an element in an array, it must be of data type

Variant.

For Each c in Worksheets(“Catalog”) -Range(“G:G)

Next

Dim lArray(10) As Long

Dim IArr As Variant

Dim ICount As Long

“"Fill array

For ICount = 0 To 10
Array(ICount) = ICount

Next ICount

a For Each control variable on arrays must be Variant

"Show each value in array

ICount = O

For Each 1Arr In lArray
MsgBox "The number ™ & ICount & ™ element in lArray is " & lArr
Count = ICount + 1

Next IArr

= Branch out of loop
Exit Do
Exit For

= Branch
GoTo labelname
labelname:
[statements]

= Conditional processing

IT condition Then . . . (must be on one line)

IT condition Then . . . Else . . . End If

IT condition Then . . . Elself condition Then . . . Else . . . End IFf
Select Case expression Case valuel . . . Case value2 . . . [Case Else . . .]
End Select

The IF statement tests the truth of a condition. A simple condition is composed of two operands
separated by a comparison operator. In the following example, the condition is underlined:

If a = b Then

A condition can be complex, i.e., it can consist of more than one simple condition combined with
logical operators, for example:

If a=Dband c=d Then

Revision: 3/18/2012 Page 35 of 111
Copyright 2001-2012 by Susan J. Dorey

There are several comparison operators:
= < <>, >= <= Like

And there are logical operators:

and If Sales > 100 and NewClients > 5 Then
or If Sales > 100 or NewClients > 5 Then
not If Not(Sales > 100) Then

Recursion

A procedure is said to be “recursive” if it calls itself, almost always passing a parameter to itself.

The “stack” is a data structure that is used to keep track of what procedure is calling what
procedure, and where execution should resume when a procedure reaches its conclusion. A
“stack” is a last-in, first-out structure, and takes is name from a stack of dinner plates. The
procedure stack in VBA has a limited capacity. At approximately 6800 stack entries, the stack is
filled to capacity and VBA terminates everything with an Out Of Stack Space run time error.

Global Variables etc.

= Variables are typically Public or Private to a subroutine or to a module, including a form
module. They can also be global to an application (database).

= Local variables are defined within a subroutine. Their scope is limited to the subroutine. A

local variable can persist when the procedure exits if defined with the Static keyword.
Dim msgTitle as String
Static cnt As Integer

= Private variables are defined in the General Declarations section. Their scope extends to the
module in which they are defined. They retain their contents throughout the life of the

module.
Option Compare Database
Private cntLong as Long “ in Declarations section

= Global variables are defined in the General Declarations section. Their scope extends to the
all modules. They retain their contents throughout the life of the application/database
session. These variables are defined in a module and become active as soon as the module is
called.

Option Compare Database

Public GBL_SQL as String “ in Declarations section

Public GBL_appTitle as String

Public Sub InitializeGlobalVariables(Q)
GBL_Username = Environ(*'username')
BGL_appTitle = “Application Name”

End Sub

Private Sub MainForm_Open(Cancel As Integer)

“ this form should open automatically when the database opens in order to
ensure variables are initialized

Call InitializeGlobalVvariables

End Sub

Revision: 3/18/2012 Page 36 of 111
Copyright 2001-2012 by Susan J. Dorey

Error Handling

If you do not incorporate error handling in your code, VBA will stop with its standard error
message box announcing the run time error with [End] and [Debug] buttons. The latter is fine for
testing, but not for a finished application. Error handling can trap the error and allow processing
to continue or stop gracefully. Trapped errors can be displayed with a message box and/or
stored in a table, or they may just cause processing to continue down a different path. Processing
can continue at the statement following the one where the error occurred or at a different
statement.

Errors can be handled differently depending on where they occur and/or what they are.

There are several statements that can be employed in error handling;:

On Error GoTo <label> when an error occurs, branch to the code in the named label;
this is the only way a true application error handler is
invoked

On Error GoTo 0 the default mode in VBA, it directs VBA to display its

standard run time error message box (which will happen if
there is no error handling); the Err object is cleared?

On Error Resume Next ignore the error and resume execution on the next line of
code
Resume resume processing at the line of code that caused the error

(be sure to fix the error before executing this statement or
your code will go into an endless loop)

Resume Next resume processing at the line immediately following the line
which caused the error

Resume <label> resume processing at the named label

When nested procedures are involved in a process, VBA uses the last On Error statement to direct
code execution. If the active procedure does not have an error handler, VBA backtracks through
its currently active procedures (stack) looking for an error-handling routine and executes the first
one it finds. If it does not find one, the default error handler routine is called.

An error handler is said to be enabled when an On Error statement refers to it. When execution
passes to an enabled error handler, that error handler becomes active. Only one error handler is
active at any given time. Ordinarily an error occuring in an active error handler is ignored,
unless that error handler raises an error (with the Raise method of the Err object) in which case
VBA is forced to search backward through the calls stack for an enabled error handler. Once the
error handler has checked for all the errors that you've anticipated, it can regenerate the original
error so VBA can pass it to a previous error handler.

You can use On Error Resume Next if you check the properties of the Err object immediately after
a line at which you anticipate an error will occur and handle any error within the procedure
instead of within an error handler.

The Err object contains information about run-time errors. It is an intrinsic object with global
scope; there is no need to create an instance of it in your code. Run-time errors may be

Revision: 3/18/2012 Page 37 of 111
Copyright 2001-2012 by Susan J. Dorey

encountered by VBA during code execution or raised explicitly in code. Run-time errors are
listed in the Help topic Trappable Errors.

The Err object's properties are reset to zero or zero-length strings (") after an Exit Sub, Exit
Function, Exit Property, or Resume Next statement within an error-handling routine. Using any
form of the Resume statement outside of an error-handling routine will not reset the Err object's
properties. The Clear method can be used to explicitly reset Err. If an error handler calls another
procedure, the properties of the Err object may be reset (cleared).

= VBA run-time errors and DAO errors are reflected in the Err object.

Methods:

Err.Raise creates an error

Err.Clear clears an error
Properties:

Number long integer; VBA uses values from 1 to 31,999; you can use any number
greater than 31,999 and less than 65535

Description text string

Source text string

= ADO errors are reflected in the DBEngine.Errors collection.

* Raising an error is done with method Raise.

Err.Raise(Number, Source, Description, HelpFile, HelpContext)

Example:

Err_Raise Number:=vbObjectError + 1000, _
Source:="TestRaiseCustomError"™, _
Description:="My custom error description."

= When you raise a run-time error, the description you provide appears in the message box.

Microsoft Yisual Basic

Run-time error '40000":

Export is stopping here, You must correct the error and start over,
Select [End].

| End | Debug | Help |

= Error handling can respond differently to different errors.
If Err.Number = 3004 Then . . .

Select Case Err.Number

Case 3004

Case Else
End Select
* You can use the AccessError method to return the descriptive string associated with a

Microsoft Access or DAO error.
Application.AccessError(ErrorNumber)

= If you are delivering an application with Access Runtime, then you must handle every error
with code.

Revision: 3/18/2012 Page 38 of 111
Copyright 2001-2012 by Susan J. Dorey

= Each subroutine in each form can have code to invoke a common subroutine when an error
occurs:

Private Sub cmdSave Click()

On Error GoTo ErrorHandler

title = "BRT Exceptions: Add Exception Message"

Exit Sub

ErrorHandler:
Call HandleError(title)

End Sub

= A common module, e.g., Utilities, contains code to display a message box, to recognize every
instance of an error, and to write one record to an Errors table for each error instance. The
use of an Errors table enables a data administrator to monitor what is happening in the
application. This code uses the ADO collection Errors.
Sub HandleError(title As String)
Dim msg As String, ErrNum As Integer, ErrDesc As String, ErrSrce As String, E
As Error
Call TurnOffHourglass
Set dbs = CurrentDb
ErrNum = Err.Number
ErrDesc = Err.Description
ErrSrce = Err.Source
msg = "ERROR! ("' & ErrNum & "): " & ErrDesc
MsgBox msg, vbOKOnly, title
Call InsertErrorRecord(ErrNum, ErrDesc, ErrSrce, title, dbs)
For Each E In DBEngine.Errors
IT Err.Number <> DBEngine.Errors(DBEngine.Errors.Count - 1)_Number Then
ErrNum = E_Number
ErrDesc = E.Description
ErrSrce = E.Source
Call InsertErrorRecord(ErrNum, ErrDesc, ErrSrce, title, dbs)
End IF
Next
dbs.Close
End Sub

Sub InsertErrorRecord(ErrNum As Integer, ErrDesc As String, ErrSrce As String,
title As String, dbs As Database)

strSQL = "INSERT INTO Errors (Source, Transaction, ErrorNumber,
ErrorDescription, NetworkUserld) VALUES (""" _
& ErrSrce & ", "™ & title & "7, " & ErrNum & ", """ & ErrDesc & "', "' &
Netld & ")
dbs_Execute strSQL
dbs.Close
End Sub
= The Errors table is defined:
ErrorID long integer, autonumber
DateTime date/time, general date; can have default value = Now/()
Source text, 50 characters (from Access object)
Transaction text, 60 characters (what user was doing at the time)
Revision: 3/18/2012 Page 39 of 111

Copyright 2001-2012 by Susan J. Dorey

ErrorNumber long integer
ErrorDescription memo
NetworkUserld text, 4 characters

= Trap a particular error:
On Error Goto errorHandle

errorHandle:
If Err.Number = 3012 Then

End If

Doing Things Periodically

When you have a “batch” process that can run for awhile, you may want to do some things
periodically while it is running. You can do things conditionally where the condition
corresponds to an interval. Possible conditions: every 10 records (if you are processing a
recordset), every 60 seconds.

= Detecting every x records.
An easy way is to use the Mod operator. The Mod operator is used to divide two numbers and
return only the remainder. For example:
15+3=5 15Mod 3=0
15+2=7r1(“r1” means with a remainder of 1) 15Mod 2=1
(Terms of division: in the following formula, y + z, y is the dividend while z is the divisor.)
If the Mod operator returns 0 then you know an interval sized by the divisor is complete.
IT cntCurr Mod 10 = O Then DoPeriodicTask
You can size the interval as you desire, from 10 to 50 to 63 etc.

= Detecting every x seconds by the running process.

Use the Timer function to detect the passing of time. Timer() returns a Single representing the
number of seconds elapsed since midnight. You can use Timer() in conjunction with Mod to
detect every 60 seconds:

If Timer() Mod 60 = 0 Then DoPeriodicTask

= Detecting every x seconds by a second form.

A form can have a Timer event which occurs at regular time intervals as specified by the form's
TimerInterval property (stated in milliseconds). In the following example, the form requeries
itself every 10 seconds.

Private Sub Form_Open(Cancel As Integer)

Me.TimerlInterval = 10000

End Sub

Private Sub Form _Timer()
Me .Requery

MsgBox '‘requery"

End Sub

= When you want a process to pause for a time interval before continuing, use the Sleep APL
Option Compare Database
Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

Sub Wait(dblSeconds As Double)
For i = 1 To dblSeconds * 100

Revision: 3/18/2012 Page 40 of 111
Copyright 2001-2012 by Susan J. Dorey

DoEvents " handle events

Sleep (10) " suspend process without a CPU performance hit
Next
End Sub
Sub Main(Q
wait(5) " pause 5 seconds
End Sub

= Let the user pause a form that would otherwise close automatically.

The form’s Timer event causes it to close after x seconds. The form can have one command
button that toggles between [Pause] and [Continue]; the first sets the TimerInterval to zero
thereby deactivating the event, the second reinstates the original TimerInterval value thereby
reactivating the event.

Private Sub cmdTimer_Click(Q)

* the form is defined with its TimeriInterval = 100

With Me.cmdTimer

If _Caption = "Pause'" Then

.Caption = "Continue"
Me.TimerInterval = 0
Else
.Caption = "Pause"
Me.TimerInterval = 100
End If
End With
End Sub

Indicate Progress—User Feedback

Generally, providing user feedback on the progress of a process is desirable. The length of time
that a process runs before ending should influence the choice of feedback mechanism. When a
process has been running for some time without screen updating the Access window will go
whitel, a disconcerting user experience. A feedback method that prevents this from happening is
highly desirable.

There are several techniques.

= Display the hourglass while process is running.

= Display a progress message in the status bar while process is running.

= Display progress meter in embedded control.

= Display progress information on a separate form while process is running.
= Display a message box at completion.

= Present lengthy exception messages in a report.

My requirements for progress feedback are:
= asynchronous, actual or simulated

= must not interfere with main process

= minimal interface with main process

T do not know the exact particulars of this mechanism. It seems that the white screen happens in less than
5 minutes, but I never kept detailed records when I encountered it. And it may be that my attribution to
lack of screen updating is in error.

Revision: 3/18/2012 Page 41 of 111
Copyright 2001-2012 by Susan J. Dorey

= can safely assume only one process runs at a time, therefore only one progress feedback can
run at a time.

Hourglass

Some processing takes more than a few seconds. In this case you will want to indicate progress
to the user for reassurance. A simple way to do this is to change the mouse pointer icon from its
default to the hourglass icon; when the process is complete, set the pointer icon back:
DoCmd.Hourglass True

DoCmd.Hourglass False

Beware that if the process abends, the pointer will not reset automatically. You may want to have
some error handling code that will reset the pointer.

The hourglass is not enough to keep the Access window from going white.

The Hourglass can be toggled:

I¥ Screen.MousePointer = 11 (Busy) Then DoCmd.Hourglass False
Else DoCmd.Hourglass True

End IFf

Message in the status bar

Admittedly the status bar is low key, but there is an easy way to use it to display progress
information. SysCmd is a method of the Application object. It displays a progress meter or text
in the status bar. It has the syntax:

SysCmd action, [argument?2], [argument3]

where action is a constant of type acSysCmdAction.

Text is limited to about 80 characters; characters in excess are truncated. The actual limit depends
on the space available—font size and window width.

One approach to using it:
* when main process starts, initialize the message:

SysCmd acSysCmdSetStatus, Now() & ": Process ... starting,” & x & " items
to process."
= periodically while process runs, update the message:

SysCmd acSysCmdSetStatus, Now() & ": Process ... processing "™ & x & " of "
&y & " items."
= when main process ends, clear the message:

SysCmd acSysCmdSetStatus, ' ' “ where the text argument
is a single space

The period interval can be time or number of items processed. The latter makes good sense to
me. Use the Mod operator to detect a period, for example:

Sub ProgressMessage()

" every 10 items

IT x Mod 10 <> 0 Then Exit Sub

msgText = Now() & ": Migrate processing continues with item " & x & " of " &
cnt & .

SysCmd acSysCmdSetStatus, msgText

End Sub

Revision: 3/18/2012 Page 42 of 111

Copyright 2001-2012 by Susan J. Dorey

I have found that when using this technique the Access window did not go blank during the 5
minutes that the process was running; the message changed every 15 seconds or so. I could have
increased the interval so that the message was updated less frequently, but appreciated the
timeliness of the message —it gave me something to watch.

Display progress meter in embedded control

I found this idea on www.TechiWarehouse.com. I have yet to try it.

The basic idea is to periodically change the contents of two form label controls, one on top of the
other. The top control displays text indicating the progress (on a transparent background) while
the bottom control changes color as the underlying process runs.

The controls exist in the open form, after the process completes the controls are hidden
(control.Visible = No). One way to allow a short delay between the process end and hiding the
controls is to display a MsgBox at the end of the process with only an OK button. When the user
closes the box the progress controls are hidden.

The top control has properties:
SpecialEffect = sunken
BackStyle = transparent
ForeColor = black

The bottom control has properties:
Width =0.00
Height = same as top control
BorderStyle = transparent

Create and position the top control. Create and position the bottom control. Select the bottom
control and send it to the back with menu Format, Send to Back.

The subroutine that changes the content of the progress controls is like:
Sub UpdatePMtr (currentNum, totalNum)
" The bottom control is lbIMeterBot, the top control is lbIMeterTop.
" This function changes the the text in the bottom control and the color and
width of the top control based on progress.
" Alternatively you could set the back color of IblMeterTop to be a single
color and use only the increasing width as an indicator.
Dim MtrPercent as Single
MtrPercent = currentNum/totalNum
MellbIMeterTop.Caption = Int(MtrPercent*100) & "%"
MellblMeterBot.Width = CLng(Me!lbIMeterTop.Width * MtrPercent)
Select Case MtrPercent
Case Is < .33
MellblIMeterBot.BackColor = 255 "red
Case Is < .66
Me!lblIMeterBot.BackColor
Case Else
Me!lblIMeterBot.BackColor
End Select
End Sub

65535 “yellow

65280 “green

Revision: 3/18/2012 Page 43 of 111
Copyright 2001-2012 by Susan J. Dorey

" Code to hide controls, to be run at end of process

Sub EndProcess()

MsgBox "process has completed" vbOKOnly, "process title here"
Mel!lblMeterBot.Visible = No

MellbIMeterTop.Visible = No

End Sub

Message box at completion

The message box (MsgBox) should include:
= atitle with the name of the process

= the current date and time

= text saying it is done (“Done.”)

= key statistics

= the OK button (vbOKOnly)

Present lengthy exception messages in a report

Exceptions that can be described briefly can be included in the MsgBox at the completion of a
process. But the MsgBox can present no more than 1024 characters of text. When the text of
exception messages exceeds that limitation, it can be presented in a text box control in a report.
This approach has an added advantage: the report is capable of being exported to a RTF file for
archiving. See “Populate Non-Table Data in a Form or Report” on page 96 for details.

Progress information form

I refer here to a form that presents progress information as a “progress meter” even though I
intend a text presentation, not a graphic presentation.

Two approaches: (1) present count of records being processed in a “on x of y” format on a
separate Progress form; (2) present messages corresponding to what is being done on a separate
Progress form.

Form contents:
Title: Progress
Process: [name of process]
Start date-time
Stop date-time
Now processing item
x] of [y]
[optional message text]

Revision: 3/18/2012 Page 44 of 111
Copyright 2001-2012 by Susan J. Dorey

Microsoft Access VBA Techniques

Running process: no OpenAras [%

Start date time:

Stop date time:

Processing record:

of.

B Progress Indicator !E H

Running process: I

My original idea was that the main process opens the form at start time and closes the form at
completion time. Inbetween the form periodically refreshes itself. But the form’s self-refreshing
requires asynchronicity which Access does not support.

Plan B works perfectly. The main process opens the form, periodically refreshes the form, and
then closes it. The main process passes its name to the Progress form as OpenArgs.

Define the Progress form with text boxes that are Enabled and Locked. The form’s key properties
are:
MinMaxButtons = no
Popup =yes
Modal = yes
RecordSelectors = no
NavigationButtons = no
CloseButton = yes
AllowFormView = yes
AllowDatasheetView = no
AllowPivotTableView = no
AllowPivotChartView = no

Revision: 3/18/2012 Page 45 of 111
Copyright 2001-2012 by Susan J. Dorey

ScrollBars = neither

ControlBox = yes

RecordSource = [none]

OnOpenEvent = procedure to initialize process name from OpenArgs

In the Progress form’s module:
Private Sub Form_Open(Cancel As Integer)
1T IsNull(Me.OpenArgs) Then

txtProcessName = "no OpenArgs"
Else

txtProcessName = Me.OpenArgs
End If
End Sub

In the main process’s module:
Private cntRec As Long
Private cntAll As Long
Private txtProcessName

Private Sub MainProcess()
txtProcessName = "name of the process”
cntAll = <some expression>
Call InitializeProgressForm
" during iterative processing
Call RefreshProgressForm
at the end of the iterative processing
Call TerminateProgressForm

End Sub

Sub InitializeProgressForm()

DoCmd.OpenForm "Progress™, acNormal, , , , acWindowNormal, txtProcessName
Forms!Progress!txtCurrent = 0O

Forms!Progress!txtFinal = cntAll

Forms!Progress!txtStart = Now()

End Sub

Sub RefreshProgressForm()

" only refresh the form if the desired interval has passed
IT cntRec Mod 10 = 0 Then Forms!Progress!txtCurrent = cntRec
End Sub

Sub TerminateProgressForm()

Forms!Progress!txtCurrent = cntRec

Forms!Progress!txtStop = Now()

" put code here to pause 3 seconds with the Sleep API

Dim strMsg as String

strMsg = "Done. " & cntAll & " records were processed.” & VvbCrLf & Now() &
vbCrLf & "When you click OK the progress window will close."

MsgBox strMsg, vbOKOnly, txtProcessName

Revision: 3/18/2012 Page 46 of 111
Copyright 2001-2012 by Susan J. Dorey

DoCmd.Close
End Sub

An approach with presenting the progress information form as a subform

If the progress information form was placed in the main form in a subform control, then, as with
the message in status bar technique, the long running process could interact with the subform.
The subform control is initially defined as invisible and placed behind normal form controls.

= when the long running process starts, the subform control is made visible and the controls
on top of it are made invisible. The controls in the subform are initialized.

= the process periodically updates the contents of the controls in the subform.

* when the process ends, the subform control is made invisible and the controls on top of it
are made visible.

Asynchronicity

Is asynchronous processing possible? Not strictly: “Access does not support asynchronous
execution”, “Access was brain damaged at birth and doesn't do multi threading.” However a
process can open a form and continue running. Can a user interact with the form while the
process is running? TBD.

While several forms can be open at the same time, when one is active, the others are doing
nothing.

Apparently setting a timer lets control be released back to Access which can then process other
events like screen redraws.

The DoEvents function can be used to redraw the screen in the midst of a long-running process.
DoEvents allows the operating system to process events and messages waiting in the message
queue. Just include it in the main processing loop:

For 1 =1 To x

SysCmd acSysCmdSetStatus, . . .
DoEvents

Next

You could have a Please Wait form open that refreshes itself or has a Cancel button on it. [How
would you connect the Cancel button to the process?]

More info on DoEvents

DoEvents costs time. There is a way to do it conditionally, only when there is user-window
events in the message queue. Use API GetInputState. The GetInputState function determines
whether there are mouse-button or keyboard messages in the calling thread's message queue. If
the queue contains one or more new mouse-button or keyboard messages, the return value is
nonzero else if there are no new mouse-button or keyboard messages in the queue, the return
value is zero.

Public Declare Function GetInputState Lib "user32" () As Long

An improved DoEvents interuption:

Revision: 3/18/2012 Page 47 of 111
Copyright 2001-2012 by Susan J. Dorey

Public Sub newDoEvents()
IT GetlnputState() <> 0 then DoEvents
End Sub

You can use API GetQueueStatus, also in user32.dll, to cherry pick the events that you want to
interrupt your program for. Be aware that while you do the interruption only for certain events,
DoEvents will handle all pending events.

Referring to the Database

An easy way to refer to the open database is with the Application.CurrentDB method. This
establishes a hidden reference to the Microsoft DAO 3.6 Object Library. It became available with
Access 2000 and should be used instead of DBEngine.Workspaces(0).Databases(0) which it
supercedes.

CurrentDB can be used in several ways:
Dim dbsCurrent As Database
Set dbsCurrent = CurrentDb

Dim rstDoc As Recordset
Set rstDoc = CurrentDb.OpenRecordset(''Document')

Message Box

The Message Box is invoked with VBA code, but included here because it is a specialized modal
(synchronous) window.

= Function MsgBox has parameters: text, [buttons] [, title] [, helpfile, context]. The maximum
length of message text is approximately 1024 characters.

= Buttons are optional. You can specifying the number and type of buttons to display, the
icon style to use, the identity of the default button, and the modality of the message box. .
More than one can be specified. Button(s) are specified by a number or a set of one or more
Visual Basic constants. Buttons can be combined by adding their numeric values. If
omitted, the default value for buttons is 0.

Constant Value Description
vbOKOnly 0 Display OK button only.
vbOKCancel 1 Display OK and Cancel buttons.
vbAbortRetrylgnore 2 Display Abort, Retry, and Ignore buttons.
vbYesNoCancel 3 Display Yes, No, and Cancel buttons.
vbYesNo 4 Display Yes and No buttons.
vbRetryCancel 5 Display Retry and Cancel buttons.
vbCritical 16 Display Critical Message icon.
vbQuestion 32 Display Warning Query icon.
vbExclamation 48 Display Warning Message icon.
vbInformation 64 Display Information Message icon.
vbDefaultButton1 0 First button is default.
vbDefaultButton2 256 Second button is default.

Revision: 3/18/2012 Page 48 of 111

Copyright 2001-2012 by Susan J. Dorey

Constant Value Description

vbDefaultButton3 512 Third button is default.
vbDefaultButton4 768 Fourth button is default.
vbApplicationModal 0 Application modal; the user must respond to the

message box before continuing work in the
current application.

vbSystemModal 4096 System modal; all applications are suspended
until the user responds to the message box.

vbMsgBoxHelpButton 16384 Adds Help button to the message box.

VbMsgBoxSetForeground 65536 Specifies the message box window as the
foreground window.

vbMsgBoxRight 524288 Text is right aligned. Normally, text is left
aligned.

= To set a button as the default:
MsgBox msgText, vbYesNo + vbDefaultButton2, msgTitle

= Function can be used as a command:
MsgBox msgtext, vbOKOnly, “My Application”

= Function can be used in an expression. This is desirable when user has choices: the

function returns the selected button.
varResponse = MsgBox(msgtext, vbYesNo + vbDefaultButton2, “My application™)

IT Response = vbYes Then " User chose Yes.
MyString = "Yes" " Perform some action.
Else " User chose No.
MyString = "No" " Perform some action.
End IFf

= Message box can be used to troubleshoot code while it is in development: Display data
values at key points.

Use Input Box To Get Data From User

= Aninput box is used to acept text from the user. It has two buttons: [OK] and [Cancel]. If
[OK] is used, the text is returned. If [Cancel] is used, a zero-length string (“”) is returned.

Dim r As String

r = InputBox("'message™, "title”, "default text')

IT r = ™" Then Exit Sub

Open/Close A Form

The Forms collection consists of all the open forms.

= Opennamed form (has 7 arguments)
DoCmd.OpenForm formName [,view, filterName, where condition, data mode,
windowmode, open arguments]

formName: “formA” or string variable containing the name of a form in the current database
view: acDesign
acNormal (default)
acPreview
Revision: 3/18/2012 Page 49 of 111

Copyright 2001-2012 by Susan J. Dorey

filterName: string expression that's the valid name of a query in the current database

where condition: a string expression used as a WHERE clause in a SQL statement, exclusive of the
actual “WHERE” word; it is used to qualify the data in the form. Acts like a filter:
limits recordset to records meeting the criteria.

data mode: acFormAdd
acFormEdit
acFormReadOnly
acFormPropertySettings (default; mode based on properties AllowEdits,
AllowDeletions, AllowAdditions, DataEntry)

window mode: acDialog
acHidden
acWindowNormal (default)
open arguments: a string expression, used to set a form’s OpenArgs property which is available to

code in the form module, such as the Open event procedure.

. Close named form
DoCmd.Close acForm, '"formname"

. Close active form
DoCmd.Close

. Close all forms
Dim frm As Form
For Each frm In Forms
DoCmd.Close acForm, frm.Name, acSaveNo
Next

In the example above acSaveNo applies to the form, not the data. To close without saving data,
precede the close by Undo.

= When several form windows are open, give one the focus
frm.SetFocus “ after Load event

. Make form window invisible
Me.Visible = False

= When you want to create a non-default instance of a form or two or more instances of a
form, you must first instantiate the form and then make it visible. See Multiple Instances of
Forms on page Error! Bookmark not defined. for details.

Open/Close a Report

= Open named report
DoCmd.OpenReport “‘reportname'™ [,view, Filter name, where condition]
view: acDesign
acNormal (default; prints report immediately on default printer)
acViewPreview
Where condition is a string expression used as a WHERE clause in a SQL statement, exclusive of
the actual “WHERE” word; it is used to qualify the data in the form.
Example:
DoCmd.OpenReport “StatusByPhase”, acViewPreview, , “(DateValue(DateTime) =
Date()”

Revision: 3/18/2012 Page 50 of 111
Copyright 2001-2012 by Susan J. Dorey

Remember the WHERE clause needs to be written to handle appropriate data types. If a field is a
string, enclose its value in quotes:
"[Botanical Name] = "' & MelBotanicalName & "'

= Close named report
DoCmd.Close acReport, ''reportmname’

= Close active report
DoCmd.Close

= Close all reports
Dim rpt As Report
For Each rpt In Reports
DoCmd.Close acReport, rpt.Name, acSaveNo
Next

= Make report window invisible
Me.Visible = False

= Open named table as report, data will be in grid format
DoCmd.OpenTable “tablename”, acViewPreview, acReadOnly

Open Table

= Open named table in datasheet view

DoCmd.OpenTable “tablename”, acViewNormal, acReadOnly

view constants: acViewDesign, acViewNormal (default, datasheet view), asViewPreview (print
preview)

datamode constants: acAdd, acEdit (default), acReadOnly

= Open table as query. Query can be used to read or update table. View and datamode
constants are the same as for method OpenTable.
DoCmd.OpenQuery ‘'‘queryname’™, view, datamode

Read a Linked Table, Find a Record

= This is a table in the current database that is linked to a table in a second Access database.
Function CountParms(MsgCat As Long, MsgNbr As Long) As Integer

" Count occurrences of % character in short text of message

Dim dbs As Database

Set dbs =CurrentDb

Dim rstMsg As Recordset

Set rstMsg = dbs.TableDefs(*'Message') .OpenRecordset(dbOpenSnapshot, dbReadOnly)
Dim strFind As String

strFind = "[Msg Category] = " & MsgCat & " AND [Msg Number] = " & MsgNbr
rstMsg.FindFirst strFind

IT rstMsg.NoMatch Then
CountParms = 99
Exit Function

End If

Dim text As String
text = rstMsg![Msg Text Short]
rstMsg.Close

Revision: 3/18/2012 Page 51 of 111
Copyright 2001-2012 by Susan J. Dorey

End Function

= afaster way to find a record:

Dim strSQL As String

strSQL = "SELECT * FROM Message WHERE " & strFind
Set rstMsg = dbs.OpenRecordset(strsSQL)

If rstMsg.RecordCount = 0 Then . . .

Run a Query

= Turn off/on messages for table updates:
DoCmd.SetWarnings True " turns them on
DoCmd.SetWarnings False " turns them off

= If you use a variable to hold a SQL statement, it can only be continued in certain places:
Dim strSQL As String

strSQL = "INSERT . . . VALUES (* "_

variable & "..")"

= For an action or data definition query:
DoCmd.RunSQL " SQL code "
DoCmd.RunSQL varSQL

= Run the SQL statement directly (apparently only for action queries).
Dim dbs As Database, strSQL As String

Set dbs = CurrentDB

strSQL = "SELECT . . . "

dbs.Execute strSQL

dbs.Close

= Open an existing query. Query can be used to read or update table.
DoCmd.OpenQuery '‘queryname'™, view, datamode
view can have values:

acViewDesign

acViewNormal (default)

acViewPivotChart

acViewPivotTable

acViewPreview

If the queryname argument is the name of a select, crosstab, union, or pass-through query whose
ReturnsRecords property is set to -1, acViewNormal displays the query's result set. If the
queryname argument refers to an action, data-definition, or pass-through query whose
ReturnsRecords property is set to 0, acViewNormal runs the query.

datamode can have values:
acAdd
acEdit (default)
acReadOnly

= For a select query whose results you need to refer to: Use a recordset. In the following
example, (1) the query is provided as a string of SQL code and (2) the selected records are
loaded into an array for ease of access. The strSource variable is the SQL select statement.

Function LoadArrayFromRecordset(strSource As String)

" code in calling procedure:

Revision: 3/18/2012 Page 52 of 111
Copyright 2001-2012 by Susan J. Dorey

" Dim dataArray As Variant has format (field, row); first is (0, 0)

" dataArray = LoadArrayFromRecordset(*'tablename')

" parameter can be table name, query name, or string variable that contains SQL
Dim n As Long

Dim varArray As Variant

Dim rst As Recordset

Set rst = CurrentDb.OpenRecordset(strSource)

varArray = rst.GetRows(20000) " put all data from recordset in 2-dimensional
array (field,row); the 20000 is an arbitrary number greater than the expected
number

rst.Close

LoadArrayFromRecordset = varArray

End Function

= If you need to refer to the query results, use a recordset based on the existing query.
Dim rstQ As Recordset

Set rstQ = CurrentDB.OpenRecordset(*'queryname')

rstQ.Fields("fieldname'™) . . .

rstQ.Close

= Open arecordset based on an ad hoc query.

Dim db As Database

Set db = CurrentdB

Dim rst As Recordset, strSQL As String

strSQL = "SELECT . . . FROM . . ."

Set rst = db.OpenRecordset(strSQL)

If rst.BOF = True Then . . . " empty

rst.Close

= For an INSERT or UPDATE query sometimes the DoCmd.RunSQL is too much trouble,
especially when dates are involved (because of the necessity of surrounding them with #
signs). Using a recordset takes more code but is easier to get right the first time.

Private rstlnv As Recordset

Set rstinv=
DBEngine.Workspaces(0) .Databases(0) -TableDefs(*'DoclInventory') .OpenRecordset(dbO
penTable)

With rstinv

-AddNew

1[Path] = po

I[Filename] = fn

I[LastSaveDateTime] = “#* & dt-—&“#>
'[Type] = ty

T[URL] = “#” & URL & “#”
I[DateCreated] = “#” & -dc—&—#>
-Update

End With

rstinv.Close

Set rstinv = Nothing

= Table type recordsets cannot be used with ODBC. What about SQL Server? “ODBC drivers
used by the Microsoft Jet database engine permit access to Microsoft SQL Server.”

Revision: 3/18/2012 Page 53 of 111
Copyright 2001-2012 by Susan J. Dorey

Using ODBC Direct

= This code is run at start up time:
Public Const ODBC_ADD DSN = 1 " Add data source

Public Const ODBC_CONFIG_DSN = 2 " Configure (edit) data source
Public Const ODBC_REMOVE_DSN = 3 " Remove data source

Public Const ODBC_ADD_SYS DSN = 4 " Add system data source
Public Const ODBC_CONFIG_SYS_DSN = 5 " Configure (edit) system Data
Source

Public Const ODBC_REMOVE_SYS_DSN = 6 " Remove system data source
Public Const vbAPINull As Long = 0& " NULL Pointer

Public Declare Function SQLConfigDataSource Lib "ODBCCP32.DLL"™ _
(Byval hwndParent As Long, ByVal fRequest As Long, _
Byval IpszDriver As String, ByVal IpszAttributes As String) As Long

Public Sub RegisterODBC()
Dim strAttributes As String
Dim strTmpl As String
Dim strTmp As String
Dim intRet As Long
Dim strDriver As String

On Error GoTo Error_RegisterODBC

"Set the attributes delimited by null.

"See driver documentation for a complete

"list of supported attributes.

strAttributes = "Server=cis01" & Chr$(0)

strAttributes = strAttributes & ''Description=Batch Run Tree Exception
Database "™ & Chr$(0)

strAttributes = strAttributes & "DSN=BRTE"™ & Chr$(0)

strAttributes = strAttributes & ""Database=BRTE" & Chr$(0)

strAttributes = strAttributes & "Trusted_Connection=no" & Chr$(0)

" strAttributes = strAttributes & '""Database=" & frmODBCLogon.txtDatabase &
Chr$(0)

" strAttributes = strAttributes & "Address=" & frmODBCLogon.txtServer &
Chr$(0)

"strAttributes = strAttributes & "Network=DBMSSOCN" & Chr$(0)

"strAttributes = strAttributes & "Trusted_Connection=No" & Chr$(0)

" strAttributes = strAttributes & "UID=sa" & Chr$(0)
" strAttributes = strAttributes & "PWD=" & Chr$(0)
"To show dialog, use Forml.Hwnd instead of vbAPINull.
intRet = SQLConfigDataSource(vbAPINull, ODBC_ADD_SYS DSN, "SQL Server',
strAttributes)
If intRet <> 1 Then
MsgBox "Failed to create ODBC DSN."
End If
Exit Sub
Error_RegisterODBC:
MsgBox "Err: "™ & Err_Description
End Sub

Revision: 3/18/2012 Page 54 of 111
Copyright 2001-2012 by Susan J. Dorey

Table Existence

You can determine if a table exists with:
I¥ DCount(“*”, “MSYSOBJECTS”, “Type = 1 and Name = “CandidateFiles”’”) = 0 Then
. . . table does not exist

Update a Table in Code

This example is for table A being updated based on data found in corresponding records in table
B. It calls the function presented in the previous topic.

Function InitParmCount()

" Set value of Parameter Count in Exception Message table records

Dim rstExc As Recordset

Set rsteExc = DBEngine.Workspaces(0) .Databases(0).TableDefs("'Exception

Message') .OpenRecordset(dbOpenTable)

With rstExc
Do Until _EOF
.Edit
I[Parameter Count] = CountParms(![Message Category], ![Message Number])
-Update
-MoveNext
Loop
.Close
End With

End Function

Update Parent-Child Tables in Code

This example copies a document from one location to another, turns off a flag and sets a date in
the control table, and adds one record each to a parent and child table.

Sub Import()

msgTitle = "Import Documents Previously Inventoried"

Dim numCnt As Long

numCnt = DCount(*"*", "NewDocsForImport')

msgText = “"There are " & CStr(humCnt) & ' records to be imported.”
MsgBox msgText, , msgTitle

"dest = ""\\myworkpath\doclibrary\eBusinessLibrary\"
dest = "c:\data\library\"

Dim fso As Object

Set fso = CreateObject('Scripting.FileSystemObject')

Dim rstNew As Recordset * DAO object

Dim rstDoc As Recordset

Dim rstSub As Recordset

Dim dbMine As Database

Set dbMine = DBEngine.Workspaces(0) .Databases(0)

Set rstDoc = CurrentDb.OpenRecordset(‘'Document')

Set rstSub CurrentDb.OpenRecordset(*'DocumentSubject'™)
Set rstNew = dbMine.OpenRecordset(**NewDocsForImport')
With rstNew

Do Until _EOF

Revision: 3/18/2012 Page 55 of 111
Copyright 2001-2012 by Susan J. Dorey

filespec = I[Path] + "\" + I[Filename]
IT fso.FileExists(filespec) Then

Set f = fso.GetFile(filespec)

cd = dest & ![PortalPath] & '"\" & I[Filename]

f.Copy cd

-Edit

I[Datelmported] = Now()

I[ImportFlag] = False

.Update

With rstDoc “ parent table
.AddNew
IFilename = rstNew!Filename
ITitle = rstNew!Title
IDocumentVersionNum = rstNew!DocumentVersionNum
IDocumentVersionDate = rstNew!DocumentVersionDate
IContact = rstNew!Contact
IClassID = rstNew!ClassID
-Update
-Bookmark = _LastModified
thislID = DoclD

End With
With rstSub “ child table
.AddNew

IDoclID = thislID
1SubjectID = rstNew!SubjectlID

-Update
-Bookmark = .LastModified
End With
Else
MsgBox "File no longer exists: " & Ffilespec, , msgTitle
End IFf
-MoveNext
Loop
End With

Set fso = Nothing

Set rstNew = Nothing

Set rstDoc = Nothing

Set rstSub Nothing

Set dbMine = Nothing

MsgBox "Import done.", , msgTitle
End Sub

Count the Number of Occurrences of a Character in a Field

This is done with iterative uses of the function InStr:
text = rstMsg![Msg Text Short]

i As Integer, Pos As Integer, StartPos As Integer

S5 O«
I 3
>

0
Pos = 200 " Ffield size is 100, so this is obviously impossible
StartPos = 1
Do Until Pos = 0
Pos = InStr(StartPos, text, "%, 1)
ITf Pos = 0 Then
CountParms = n

Revision: 3/18/2012 Page 56 of 111
Copyright 2001-2012 by Susan J. Dorey

Exit Do
End If
n=n+1
StartPos = Pos + 1
Loop

Count Records

Note that the RecordCount property doesn’t always work properly. It depends on the type of
recordset. All but table type require that the cursor be positioned on the last record prior to
invoking the property.

Function CountRecords(Tablename As String)

Dim rst As Recordset

Set rst = CurrentDb.OpenRecordset(Tablename)

" rst.MovelLast needed for non-table types
CountRecords = rst.RecordCount
rst.Close

End Function

= Count function. Use in queries. Syntax: Count(fieldName).

ey

= DCount function counts records in a domain. Use in code. Syntax: DCount(fieldname/”*”,
tablename/queryname, criteria). Example: DCount(“[field1] + [field2]”, “table2”)

Use of Fieldname causes records with Null value in this field to not be counted. Using “*” counts

all records. Criteria is optional. It is a string expression that is the equivalent of a WHERE clause.

Eya

= Count records in a table or query.

Dim cnt As Long

cnt = DCount('[field name]™, '‘query name')
where field name is one that never has a null value

= Count records in an action query.
Dim dbs As Database

Set dbs = CurrentDb

Dim cnt As Long

dbs.Execute strSQL

cnt = dbs.RecordsAffected

= Count records in a subform. See page Error! Bookmark not defined. for details.

String Manipulation

= Relevant statements:

Option Compare statement specifies how string comparisons are done.
syntax: Option Compare constant
constants: Binary (makes comparison case-sensitive), Text (makes comparison case-
insensitive), Database (comparison is dependent on the sort order for the specified locale,

default is case-insensitive, applies only to Access databses).
Database constant is added automatically to new modules. Best replaced by one of the two
other values.

= Relevant functions:

InStr function returns the position of the first occurrence of one string within another.
syntax: InStr([start position,] StringToBeSearched, SearchString)
example: CharPos = InStr(ReasonText, “s”)

Revision: 3/18/2012 Page 57 of 111
Copyright 2001-2012 by Susan J. Dorey

InStrRev function is like InStr except it starts the search at the end of the string and works
backward.
Len function returns a long integer containing the number of characters in a string.
Left function returns the specified number of characters from the left side of a string.
syntax: Left(string, length)
example: LeftChars = Left(MyString, 6)
Right is like Left.
Mid function returns a substring (specified number of contiguous characters) from a string.
syntax: Mid(string, start position[, length])
example: ErrText=Mid(Err.Description, 5, 10)
StrConv function converts characters in a string to one of several formats.
syntax: StrConv(string, conversion constant)
constants: vbUpperCase, vbLowerCase, vbProperCase (title case)
NOTE: these constants cannot be used in SQL, see the next page for that situation.
Trim function returns the string without leading and trailing spaces.
syntax: Trim(string)
RTrim function removes trailing (right) spaces.
LTrim function removes leading (left) spaces.
LCase function converts a string to lowercase.
Syntax: LCase(string)
UCase function converts a string to uppercase.
Syntax: UCase(string)
String function returns a string created by repeating a particular character a particular number of
times.
syntax: String(number, character)

The following functions are new in Access 2000.
Split function returns a one-dimensional zero-based array where each cell contains a word of the
string. See below for details.
syntax: Split(string)
Join function returns a string that concatenates the individual words contained in a one-
dimensional array. It reassembles the string that was decomposed by Split.
syntax: Join(array)
Replace function performs find and replace action on all occurrences of a substring within a
string. Can be used in a SQL statement.
syntax: Replace(string, FindString, ReplaceString)
example: CorrectedText = Replace(EnteredText, “x”, “y”)
A wildcard search and replace can be effected by using Replace with Split and Join: First split the
string, second Replace each cell in the array, third Join the array.
Filter function returns a zero-based one-dimensional array containing a subset of a string array
that includes/excludes a specified substring. Use in conjunction with Join and Replace.
syntax: Filter(SourceArray, SearchString[, IncludeBooleanValue][, compare constant])
include values: True, False (selects only if search string is not present)
constants: vbUseCompareOption, vbBinaryCompare, vbTextCompare,
vbDatabaseCompare.

= Function InStr normally returns a value with type Variant (Long).
For InStr([start,]string1, string2[, compare])

Revision: 3/18/2012 Page 58 of 111
Copyright 2001-2012 by Susan J. Dorey

If InStr returns

string] is zero-length 0

string] is Null Null

string? is zero-length start

string?2 is Null Null

string? is not found 0

string? is found within string1 position at which match is found
start > string?2 0

This matters because if code compares the value with an integer, it can fail in certain conditions.
Used improperly a data type mismatch error can occur.

= Inorder to use the StrConv function in an SQL statement, use the integer that corresponds to
the conversion constant.
vbProperCase = 3
Example: SELECT Table, Column, StrConv(Attribute, 3) AS EnglishName . ..
You don’t need vbUpperCase and vbLowerCase constants because you can use the LCase() and
UCase() functions for that.

= Split function has syntax:
Split(expression|, delimiter[, limit[, compare]]])
where

Part Description

expression | Required. String expression containing substrings and delimiters. If expression is
a zero-length string(""), Split returns an empty array, that is, an array with no
elements and no data.

delimiter Optional. String character used to identify substring limits. If omitted, the space
character (" "
single-element array containing the entire expression string is returned.

) is assumed to be the delimiter. If delimiter is a zero-length string, a

limit Optional. Number of substrings to be returned; 1 indicates that all substrings
are returned.

compare Optional. Numeric value indicating the kind of comparison to use when
evaluating substrings. See Settings section for values.

Example:
Split(MemberOrderList, “,”, 1)

= Relevant operators: =, >, <, <>, >=, <=, Like
Like operator performs wildcard comparison. Behavior is based on Option Compare statement.

wildcard represents
*

any number of characters, including zero

? any single character
any single digit (0-9)
[charlist] any single character in the list; example: [a-Z]
The particular character must be specified in the list, e.g., [0-
I [A-Z]
[!charlist] any single character not in the list
Revision: 3/18/2012 Page 59 of 111

Copyright 2001-2012 by Susan J. Dorey

= When a search string includes a special character, use the Chr function which returns a
string expression equivalent to the character code.
example: for single quote () Chr(39), for double-quote (“) Chr(34), for apostrophe ?

= Find and Replace Text (in Acccess 97)
Function ExpandMsgText(ExcplD As Long) As String
Dim rstMsg As Recordset " holds Message table record
"Put message parms in an array
Dim strParm(1 To 9) As String
strParm(l) = rstExcp![Message Parml]
"Expand short text to include parm values
Dim Text As String, StrET As String, n As Integer, Pos As Integer, StartPos As
Integer, code As String, strLength As Integer
Text = rstMsg![Msg Text Short]
rstMsg.Close
n=1
StartPos = 1
Do Until n > 9
code = "%" & n
Pos = InStr(StartPos, Text, code, 1)
If Pos = 0 Then
StrET = strET & Mid(Text, StartPos)
ExpandMsgText = strET
Exit Do
End If
strLength = Pos - StartPos
StrET = strET & Mid(Text, StartPos, strLength) & strParm(n)
n=n+1
StartPos = Pos + 2
Loop

Getting Network User Id

= There is an Application.CurrentUser method which returns the name of the current database
user, but this is only useful when using workgroup security. If not, the method always
returns “Admin.”

= Use 32-bit API. Works in Windows NT.
Declare Function wu_GetUserName Lib "advapi32" Alias "'GetUserNameA"™ _
(Byval IpBuffer As String, nSize As Long) As Long

Sub GetNetworkUserID () As String

Dim IngStringLength As Long

Dim sString As String * 255

IngStringLength = Len(sString)

sString = String$(IngStringLength, 0)

IT wu_GetUserName(sString, IngStringLength) Then
NetID = Left$(sString, IngStringLength)

Else
NetID = “Unknown **

End ITf

Dim IngLength As Long

Revision: 3/18/2012 Page 60 of 111
Copyright 2001-2012 by Susan J. Dorey

IngLength Len(Netld)
IngLength = IngLength - 1
Netld = Left(Netld, IngLength)
End Sub

= This involves using the WIN32API and requires Windows 2000.

"DECLARATION Win32 API
Declare Function GetUserNameEx Lib "secur32.dll" Alias "GetUserNameExA"™ (ByVal
ExtendedNameFormat As Integer, ByVal IpBuffer As String, nSize As Long) As Long

Global Netld As String “"network user 1D of current user

Function GetNetworkUserID() As String

"The call would be: Networkld = GetNetworkUserID()
On Error GoTo ErrorHandler

Dim title As String, Workld As String

title = "BRT Exceptions: Get Network User ID"

Dim NAMESAMCOMPATIBLE As Integer

Dim Name As String * 64

"Return as domain\userid
NAMESAMCOMPATIBLE = 2

Name = Space(64)

1T GetUserNameExX(NAMESAMCOMPATIBLE, Name, 64) Then
Workld = TrimNulls(Name)

Else
MsgBox "Could not determine your user ID. Please make sure you are logged

in to the network.", vbOKOnly, title

End If

" example of id: PGE\SJDa

" strip off PGE\

Workld = Replace(Workld, "PGE\", "")

" convert to all caps

Netld = UCase(Workld)

GetNetworkUserlID = Netld

Exit Function

ErrorHandler:
Call HandleError(title)
End Function

Function TrimNulls(IString As String) As String
On Error Resume Next
If InStr(IString, Chr$(0)) = 0 Then
TrimNulls = IString
Else
TrimNulls = Left$(IString, InStr(IString, Chr$(0)) - 1)
End IFf
End Function

Revision: 3/18/2012 Page 61 of 111
Copyright 2001-2012 by Susan J. Dorey

= Works in Windows 98, does not require Windows 2000.
Declare Function WNetGetUser Lib "mpr"™ Alias "WNetGetUserA"™ (ByVal IpName As
String, ByVal IpUserName As String, IpnLength As Long) As Long

Sub GetNetworkUserID()

" set variable Netld = user"s network logon id using Win32 API

" variable is set once (at start up) and then referenced when needed
On Error GoTo ErrorHandler

Dim Title As String, Workld As String

Title = "BRT Exceptions Admin: Get Network User ID"

Dim NAMESAMCOMPATIBLE As Integer

Dim Name As String * 64

"Return as domain\userid
NAMESAMCOMPATIBLE = 2

Name = Space(64)

I WNetGetUser(vbNullString, Name, 64) = 0 Then
Workld = Mid(Name, 1, InStr(l1, Name, Chr(0), vbBinaryCompare) - 1)
Else
MsgBox "Could not determine your user ID. Please make sure you are logged
in to the network.", vbOKOnly, Title
End 1If

" strip off PGE\

Workld = Replace(Workld, "PGE\", "")
" convert to all caps

Netld = UCase(Workld)

Exit Sub

Function TrimNulls(IString As String) As String
On Error Resume Next
If InStr(1String, Chr$(0)) = 0 Then
TrimNulls = IString
Else
TrimNulls = Left$(1String, InStr(1String, Chr$(0)) - 1)
End IFf
End Function

= Once a user is logged on to a session of Access, you can get their name.
Function GetUserName()

" Determine user name

Dim strUserName As String

strUserName = DBEngine.Workspaces(0) .UserName

GetUserName = strUserName

End Function

Combine Records by Stringing
Sub BuildString(Q)

" Two tables exist, both with two fields. The first column is the key field.

" The second-string-table is based on the first-base—table.

" The base table can have one or more records having the same value in

" the first field. The combinations of the first and second fields are unique.

Revision: 3/18/2012 Page 62 of 111
Copyright 2001-2012 by Susan J. Dorey

" The string table has only one record for each unique value in the

" First field of the base table;

" the second field values are a comma-delimited series of the second field
" values in the base table.

" For example: the base table has records:
" Al-Bl; Al1-B2; A2-B3; A2-B2; A2-B4.

" The string table has records:

" Al-Bl1, B2, B3; A2-B2, B4.

" The sequence of the base table is critical to this procedure.
" Consequently, the table must have a primary index which is used here.
" Both tables must exist at the beginning of this procedure.

Dim dbs As Database, rstl As Recordset, rst2 As Recordset
Dim tdfl As TableDef, i1dxl As Index

Dim r, cnt As Integer, i As Integer

Set dbs = CurrentDb

Set rstl = dbs.OpenRecordset(''base table', dbOpenTable)

Set rst2 = dbs.OpenRecordset(''string table', dbOpenTable)

Set tdfl = dbs.TableDefs![base table]

Set idx1l = tdfl.Indexes![base table index]

rstl.Index = idx1l.Name " needed to use index by recordset
cnt = 0

r=20

" empty string table
DoCmd.RunSQL "DELETE * FROM stringtable"

Call AddRecord(rstl, rst2)
rstl.MoveNext
i=1
With rstl
Do While Not .EOF
i=i+1
ITf rstl_Fields(0) = rst2_Fields(0) Then
rst2_Edit
rst2_Fields(1) = rst2_Fields(l) & ", " & rstl_Fields(l)
rst2_Update
Else
Call AddRecord(rstl, rst2)
End 1If
-MoveNext
IT _EOF Then * for troubleshooting only
r = MsgBox("'eof, record number = " & i, , "Test")
End If
Loop
End With

cnt = rst2_RecordCount

r = MsgBox(''string table has " & cnt & " records at end", , "Test")
rstl._Close

rst2_Close

End Sub

Revision: 3/18/2012 Page 63 of 111
Copyright 2001-2012 by Susan J. Dorey

Sub AddRecord(rstl As Recordset, rst2 As Recordset)
rst2._AddNew

rst2.Fields(0) = rstl.Fields(0) " RS

rst2.Fields(1) = rstl.Fields(l) " BF

rst2._Update

rst2.Bookmark = rst2.LastModified " makes new record current

End Sub

Let User Cancel Program

= Display message box with [OK] and [Cancel] buttons. Test which button user selected. If
[OK] continue, else stop.

Dim r

r = MsgBox("'text', vbOKCancel, "title™)

ITf r = vbCancel Then Exit Sub

Log User Activity

= It can be helpful for data administration to log user activity by writing records to a special

table.
= Table UserActivityLog is defined:
Log ID long integer, autonumber
Activity Date-Time date/time, general date; default value = Now()
Network User Id text, 4 characters
Activity text, 50 characters
. Each module that performs an activity that is to be logged calls a common
subroutine:

Dim Activity As String (could be defined as Public in a common module)
Activity = "Added " & cnt & " widgets."
Call LogUserActivity(Activity)

= The common subroutine, residing in a common module like Utilities, writes a record to the
table:

Sub LogUserActivity(strActivity As String)

DoCmd.SetWarnings False

strSQL = "INSERT INTO UserActivityLog ([Network User ID], [Activity]) VALUES

(""" & Netld & "7, ™" & strActivity & "")"

DoCmd.RunSQL strSQL

DoCmd.SetWarnings True

End Sub

Change a Table Field Name
Change the Name property of the field in a TableDef object (DAQO 3.6 object).

Is Functions

There are a group of functions that determine the type of object being tested. They return True or
False.

IsArray

IsDate

IsEmpty determines if variable has been initialized

Revision: 3/18/2012 Page 64 of 111
Copyright 2001-2012 by Susan J. Dorey

IsError

IsMissing determines if variable has been passed to a procedure

IsNull
IsNumeric
IsObject

Run-time Error 70 Permission Denied

I have encountered this trying to delete a file. It does not always happen in the same code. This
seems to happen when the file is locked by another process. By which I think it is safe to say that
if a VB module abends while a file is being handled, it remains locked for some period of time.

So if you immediately rerun the code, the run-time error occurs. I guess that the file is not

unlocked when the module abends.

I found the following possible solution:

Try different ways to delete the files.

Use ShlFileOperation,

Here are some of the functions | tried in W2K

Dim iFileLocked as Long, iFilelnUse as Long
Private Sub Commandl_click()

iFileLocked "C\Windows\Explorer.exe"
iFilelnUse "C\Windows\Explorer._exe"

if iFilelnUse =1 then msgbox "In Use"

if iFileLocked =1 then msgbox 'Locked"

End Sub

Function IsFileOpen(filename As String)

Dim filenum As Integer, errnum As Integer

On Error Resume Next " Turn error checking off.
filenum = FreeFile() " Get a free file number.

* Attempt to open the file and lock it.

Open fTilename For Input Shared As #filenum

Close filenum * Close the fTile.

errnum = Err * Save the error number that occurred.
On Error GoTo O * Turn error checking back on.

" Check to see which error occurred.
Select Case errnum

" No error occurred.

" File is NOT already open by another user.
Case O

IsFileOpen = False

MsgBox "file is not open"

" Error number for "Permission Denied."

" File is already opened by another user.
Case 70

IsFileOpen = True

MsgBox "file is Open"

" Another error occurred.

" ListLocked.Addltem filename

Revision: 3/18/2012
Copyright 2001-2012 by Susan J. Dorey

Page 65 of 111

iFileLocked = 1
Case Else

Error errnum
End Select

End Function

Function IsExclusive(aFile$) As Boolean

iFileLocked = 0

iFilelnUse = 0

Dim Buf As Integer

On Local Error GoTo CEError

Isexclusive = True

IT Dir(aFile$) = " Then Exit Function

"a simple routine to detect locked files, but doesn"t detect
"files used by windows.

" SetAttr aFile$, vbNormal "File has to be not hidden.

"Buf = FreeFile: Open aFile$ For Binary Lock Read Write As Buf
Buf = FreeFile: Open aFile$ For Binary Access Read Write Lock Read Write
As Buf

Close Buf

Exit Function
CEError:
msgbox aFile$
iFilelnUse = 1
Exit Function
End Function

There is a freeware program on the internet that reports what processes have a file opened and/or
locked.

Change Text of Access Title Bar

By default, the title bar for Access reads “Microsoft Access.” It also has the Access icon. You can
change one or both of these. The simplest way is to set the Application Title and/or the
Application Icon property in the “Startup” dialog box (opened with menu Tools, Startup).
Should you want the title to reflect some session condition, such as the user name, you will have
to use VBA code. The process is in two steps: (1) set the AppTitle and/or Applcon property, then
(2) run the method Application.RefreshTitleBar.

Most Access properties don't actually exist until you set a value. To set the AppTitle property in
code, you must first either set the property in the “Startup” dialog box once or create the
property by using the CreateProperty method and append it to the Properties collection of the
Database object. You then use the RefreshTitleBar method to make any changes visible
immediately. In the following example, the error handler handles the situation where property
AppTitle (or Applcon) did not exist because it had not been set in the “Startup” dialog box.

You can you can reset the AppTitle and Applcon properties to their default value by (1) deleting
them from the Properties collection representing the current database and (2) use the
RefreshTitleBar method to restore the Microsoft Access defaults to the title bar.

Revision: 3/18/2012 Page 66 of 111
Copyright 2001-2012 by Susan J. Dorey

If the path to the icon specified by the Applcon property is invalid, then no changes will be
reflected in the title bar when you call this method.

This method became available in Access 2000.

Note: the logged on user has to have 'Administer' privilege on the database to change this
property (or any other startup property) with code. This restriction may be avoided by using the
DAO CreateProperty method which has a fourth parameter called DDL. The DDL paremeter is
optional, a Variant (Boolean subtype) that indicates whether or not the Property is a DDL object.
The default is False. If DDL is True, users can't change or delete this Property object unless they
have dbSecWriteDef permission.

Sub ChangeTitle()

Dim obj As Object

Const conPropNotFoundError = 3270

On Error GoTo ErrorHandler

" Return Database object variable pointing to the current database.
Set dbs = CurrentDb

" Change text of title bar.
dbs_Properties!AppTitle = "your special text here"
" Update title bar on screen.
Application._RefreshTitleBar

Exit Sub

ErrorHandler:

IT Err.Number = conPropNotFoundError Then
Set obj = dbs.CreateProperty("AppTitle™, dbText, "Contacts Database'™)
dbs_Properties.Append obj

Else
MsgBox "Error: ' & Err_Number & vbCrLf & Err.Description

End IT

Resume Next

End Sub

The following code with DAO allows any user to run it successfully.
Function ChangeProperty(strPropName As String, _
varPropType As Variant, varPropValue As Variant) As Integer
" The current listing in Access help file which will

" let anyone who can open the db delete/reset any

" property created by using this function, since

" the call to CreateProperty doesn"t use the DDL

" argument

Dim dbs As Database, prp As Property
Const conPropNotFoundError = 3270

Set dbs = CurrentDb

On Error GoTo Change_Err
dbs.Properties(strPropName) = varPropValue
ChangeProperty = True

Change_Bye:
Exit Function

Revision: 3/18/2012 Page 67 of 111
Copyright 2001-2012 by Susan J. Dorey

Change_Err:
IT¥ Err = conPropNotFoundError Then " Property not found.
Set prp = dbs.CreateProperty(strPropName, varPropType, varPropValue)
" The DDL parameter is missing, thus letting any user execute the
" CreateProperty method.
dbs.Properties.Append prp
Resume Next
Else
" Unknown error.
ChangeProperty = False
Resume Change_Bye
End If
End Function

Export Table as Spreadsheet

This is done with DoCmd.TransferSpreadsheet. There is an unpleasant “feature” where VBA
appends a file type to the destination filename provided as an argument. Hence, it the code says
to export table named “Wow” to a file named “C:/data/wow.xls”, the resulting file will be named
wow.xIs.XLS. Gee! According to Microsoft’s website, this began with Access 7.0.

Well I do not get it (5-25-07): I ran this code with a destination filename like “text.xls” and the
TransferSpreadsheet action saved a file named “text.xIs.XLS.” But the second time it used
“text.x]s.” Inconsistency.

Create Table by Import with Hyperlink

Per Microsoft: If you create a table by importing data, Microsoft Access automatically converts
any column that contains URLs (an address that specifies a protocol such as HTTP or FILE and a
full filename or website address, for example: http://www.microsoft.com/) or UNCs (a name with
the syntax \ \ server\share\ path\filename) paths into a hyperlink field. Access will convert the
column only if all the values start with a recognized protocol, such as “http:” or “\\.” If any
value starts with an unrecognized protocol, Access won't convert the column into a hyperlink
field.

But what about an existing table?

In an Access table a valid hyperlink has the form displaytext#address#subaddress#screentip
where the address part includes the protocol (e.g., “file:”). When a field has data type Hyperlink,
after you import data into it, the hyperlink has no address (href) and consequently has no effect.
If you run a query like:

UPDATE CandidateFiles SET URL = URL + “#” + URL + “#”

the hyperlink becomes operative. This will not work if the field’s data type is Text.

The limitation with this approach is that once records have a real hyperlink, you cannot re-run
the query and get correct results.

File Attributes

File attributes can interfere with file handling actions. You can determine the attributes and
change them with two statements.

Revision: 3/18/2012 Page 68 of 111
Copyright 2001-2012 by Susan J. Dorey

= The GetAttr statement returns an Integer representing the attributes of a file, directory, or
folder. It can return the following values:

Constant
vbNormal
vbReadOnly
vbHidden
vbSystem
vbDirectory
vbArchive
vbAlias

Value Description

0 Normal.

1 Read-only.

2 Hidden.

4 System file. Not available on the Macintosh.

16 Directory or folder.

32 File has changed since last backup. Not available on the Macintosh.
64 Specified file name is an alias. Available only on the Macintosh.

= A companion statement is SetAttr which sets attribute information for a file.

You can use these together:
IT GetAttr(filespec) = vbReadOnly Then SetAttr(filespec, vbNormal)

You delete a Word file with the Kill statement. But Kill does not work on a read-only file. The
solution is to first make the file not read-only:
SetAttr filespec, vbNormal

Kill filespec

Get/Set File Information with FileSystemObject

= “It's interesting. Many VB experts will guide you away from using the FileSystemObject.
There are good reasons to avoid it. For instance, it is on the order of 8 times slower to parse
a directory structure than a good ole complicated API call to Windows. But we're not
parsing here. Is it equally inefficient at moving files from one place to another? Nope, it's
only 1.5 times slower at this job. So the next obvious question is ‘Does it matter?” Again,
‘Nope’ is probably the best answer.”

= The FileSystemObject provides access to a computer's file system. It has many methods,

some of which are listed here.

Method
BuildPath

CreateFolder
DeleteFolder
CopyFolder
MoveFolder
DriveExists

FolderExists

Revision: 3/18/2012

Description

Appends a name to an existing path.
object.BuildPath(path, name)

Creates a folder.

object.CreateFolder(foldername)

Deletes a folder.

object.DeleteFolder (folderspec], force])

Recursively copies a folder from one location to another.
object.CopyFolder (source, destination[, overwrite])
Moves one or more folders from one location to another.
object.MoveFolder (source, destination)

Returns True if the specified drive exists; False if it does not.
object.DriveExists(drivespec)

Returns True if a specified folder exists; False if it does not.
object.FolderExists(folderspec)

Page 69 of 111

Copyright 2001-2012 by Susan J. Dorey

Method Description
FileExists Returns True if a specified file exists; False if it does not.
object.FileExists(filespec)

MoveFile Moves one or more files from one location to another.
object.MoveFile (source, destination)

GetDrive Returns one Drive object corresponding to drive letter or UNC path
object.GetDrive(drivespec)

GetFolder Returns a Folder object corresponding to the folder in a specified path.
object.GetFolder(folderspec)

GetFile Returns a File object corresponding to the file in a specified path.

object.GetFile(filespec)

GetFileName Returns the last component of specified path that is not part of the drive
specification. Parses filespec.
object.GetFileName(pathspec)

GetAbsolutePat = Returns a complete and unambiguous path from a provided path

hName specification. Reflects current directory. Does not return UNC.
object.GetAbsolutePathName(pathspec)

DeleteFile Deletes named file. The filespec can contain wildcards in the last path
component.

object.DeleteFile(filespec)

GetAbsolutePathName examples, mydocuments is the current directory:

objFSO.GetAbsolutePathName("C:") returns "c:\mydocuments"”
objFSO.GetAbsolutePathName("c:\") returns "c:\"
objFSO.GetAbsolutePathName("c:..") returns "c:\mydocuments"

DeleteFile examples:

objFSO.DeleteFile("C:\FSO\ ScriptLog.txt") deletes single file in named directory
objFSO.DeleteFile("C:\FSO*.doc") deletes all files with a suffix of “doc” in the
named directory
objFSO.DeleteFile("C:\FSO*log.* ") deletes all files with the string “log”
somewhere in their name, in the named
directory
objFSO.DeleteFile("C:\FSO*.txt", True) deletes all files with a suffix of “txt” in the

named directory, even if they are read-only
Unless you force read-only files to be deleted, attempting to delete one will cause the method to
fail and in such a way that you cannot prevent the method from stopping.

It has other objects and collections:

= Drives collection: Collection of all the drives installed on a computer, including removable
drives and mapped network drives (in other words, any drive with a drive letter). The
following example illustrates how to get a Drives collection and how to iterate the collection:

Function ShowDrivelList()

Dim fso, drvcol, drv

Set fso = CreateObject('Scripting.FileSystemObject')

Set drvcol = fso.Drives

For Each drv in drvcol

Revision: 3/18/2012 Page 70 of 111
Copyright 2001-2012 by Susan J. Dorey

MsgBox "Drive letter: " & drv.DrivelLetter

Next
End Function

= Drive object: Provides access to drive information. You can access a drive directly with the

GetDrive method of the FSO object. The GetDrive method requires a single parameter: the
driver letter of the drive or the UNC path to the shared folder. To specify a drive letter, you
can use any of the following formats: C, C:, C:\. An example of this:

Set objFSO = CreateObject(*'Scripting.FileSystemObject™)

Set objDrive =

Drive Property
Path

RootFolder
VolumeName

ShareName
IsReady

FileSystem
DriveType

SerialNumber
DriveLetter

TotalSpace

AvailableSpace
or FreeSpace

objFSO.GetDrive(''C:™)

Description

path of the drive as either drive letter with trailing colon or UNC;
examples: “C:”, “G:”, “\ \sonyvaio\ psfonts.” It seems to return the value
of the drive specification used in the GetDrive method, at least when
network drive is a folder on a second, networked desktop computer.
Specifications say it returns drive letter for local drives and UNC for
network drives.

path to the root folder on the drive.

examples: “HP_PAVILION” for ¢; run-time error 71 (disk not ready)
when local drive is empty; run-time error 68 when network device is
unavailable

blank if no share name (local drive)

indicates if device is ready for use as True or False; will get run-time error
68 when device is unavailable. If a drive is not ready (which typically
means that a disk has not been inserted into a drive that uses removable
disks), you can retrieve only the following four drive properties:
DriveLetter, DriveType, IsReady, ShareName. Any attempt to retrieve
the other properties will trigger an error.

type of file system used by the drive: FAT, FAT32, NTFS, etc.

integer reflecting type of drive:

1 - Removable drive (as is used for digital camera smart cards)

2 - Fixed drive (hard disk)

3 - Mapped network drive

4 - CD-ROM and DVD drive

5- RAM disk

serial number of drive

letter assigned to drive; examples: C, G. No trailing colon. Blank when
drivespec is UNC.

amount of space on the drive in bytes; not available for folder with drive
mapping (get run-time error 438)

amount of space available on the drive in bytes

= Folders Collection: Collection of all Folder objects contained within a Folder object. Has
properties: Count, Item, SubFolders. The following example illustrates how to get a Folders
collection and how to iterate the collection:

Function ShowFolderList(folderspec)

Dim fso, f, f1, fc, s

Revision: 3/18/2012

Page 71 of 111

Copyright 2001-2012 by Susan J. Dorey

Set fso = CreateObject('Scripting.FileSystemObject')
Set f = fso.GetFolder(folderspec)
Set fc = f.SubFolders
For Each fl1 in fc
s = s & fl.name
S =s & ""
"
Next
ShowFolderList = s
End Function

SubFolders Property: Returns a Folders collection consisting of all folders contained in a
specified folder, including those with hidden and system file attributes set.

= Folder Object: Provides access to all the properties of a folder. Has properties similar to File
object; also has Files Property. The following code illustrates how to obtain a Folder object
and how to return one of its properties:

Function ShowDateCreated(folderspec)

Dim fso, T

Set fso = CreateObject('Scripting.FileSystemObject')

Set f = fso.GetFolder(folderspec)

ShowDateCreated = f.DateCreated

End Function

Files Property: Returns a Files collection consisting of all File objects contained in the specified
folder, including those with hidden and system file attributes set.

= Files Collection: Collection of all File objects within a folder. Has properties: Count, Item.
The following example illustrates how to get a Files collection and iterate the collection:
Function ShowFolderList(folderspec)
Dim fso, ¥, f1, fc, s
Set fso = CreateObject('Scripting.FileSystemObject')
Set f = fso.GetFolder(folderspec)
Set fc = f.Files
For Each f1 in fc
s = s & fl_name
S = s & "
"
Next
ShowFolderList = s
End Function

= File Object: Provides access to all the properties of a file. Has methods: Copy, Move,
Delete, OpenAsTextStream. Has properties: Attributes, DateCreated, DateLastAccessed.
DateLastModified, Drive, Name, ParentFolder, Path, ShortName, ShortPath, Size, Type. The
following code illustrates how to obtain a File object and how to view one of its properties.

Function ShowDateCreated(filespec)

Dim fso, f

Set fso = CreateObject(''Scripting.FileSystemObject')

Set f = fso.GetFile(filespec)

ShowDateCreated = f.DateCreated

End Function

= The best way to get file information is to use the FileSystemObject.

Dim fso, f, p, fn

Set fso = CreateObject('Scripting.FileSystemObject')

fn = "c:\Data\Janice IR SR Analysis\Data\All Open IRs 6-12-2003.xIs"

Revision: 3/18/2012 Page 72 of 111
Copyright 2001-2012 by Susan J. Dorey

Set f = fso.GetFile(fn)

p = f.ParentFolder.Path " returns "c:\Data\Janice IR SR Analysis\Data\"
MsgBox p

Set fso = Nothing

Set f = Nothing

Method Copy syntax: fileobject.Copy destination[, overwrite] default overwrite is True
Method Move syntax: fileobject. Move destination
Method Delete syntax: fileobject.Delete [force] force applies to read-only files

. Does file exist?
Sub LookForExistingFile(Filename)
Dim fso, Filename, filespec, libpath
Set fso = CreateObject(''Scripting.FileSystemObject')
libpath = "\\myworkpath\doclibrary\eBusinessLibrary\"
“ Filename = "catalog.xls"
filespec = libpath + Filename
IT fso.FileExists(filespec) Then
MsgBox "File of this name already exists in the repository."™, vbOKOnly
End If
Set fso = Nothing
End Sub

= It's best to include error handling so the program does not stop prematurely.
On Error GoTo Catch

Catch: FileName = """
Resume Next
End Sub

Using the Shell Objects

The Windows Shell can be used to access the file system, launch programs, and change system
settings. It can be accessed in two ways: (1) via APIs in the shell32.d1l and (2) with VBA objects.
The latter provides simpler access to these features and dialog boxes than using APIs. It may
require a reference to Microsoft Shell Controls and Automation (the shell32.dll).

= Instantiate and close the Shell object.
Set objShell = CreateObject(*'Shell _Application')
Set objShell = Nothing

Method Description
BrowseForFolder | Creates a dialog box that enables the user to select a folder and then
returns the selected folder's Folder object.

Explore Opens a specified folder in a Microsoft Windows Explorer window.

FindFiles Displays the Find: All Files dialog box. This is the same as clicking the
Start menu, selecting Find, and then selecting Files or Folders.

NameSpace Creates and returns a Folder object for the specified folder.

Open Opens the specified folder.

objShell .Explore(*'C:\"")
Dim objFolder As Folder

Revision: 3/18/2012 Page 73 of 111
Copyright 2001-2012 by Susan J. Dorey

Set objFolder = objShell._NameSpace("'C:\"")
objShell.Open(*'C:\")

= BrowseForFolder is a method of the Shell object. It presents a dialog box with which the
user selects a folder. It returns a Folder object. It has parameters:

handle handle to parent window
title title of Browse dialog box
options the same as the ulFlags member of the BROWSEINFO structure of the

DLL; some do not apply to older versions of Shell
root folder optional; user cannot browse higher in the tree than this folder. Can be
string or one of the ShellSpecialFolderConstants

Set objShell = CreateObject(*'Shell _Application')

Set objFolder objShell .BrowseForFolder(0, "Please select a folder™, 0, "C:\")
Set objFolder = objShell _BrowseForFolder(0, ""Please select portal directory for
compare'™, 0, root) “ where root is defined as Variant

= The Folder object provides access to information about the folder, creates subfolders, and
copies and moves file objects into the folder.

Method Description

CopyHere Copies an item or items to a folder.

Items Retrieves a Folderltems object that represents the collection of items in the
folder.

MoveHere Moves an item or items to this folder.

NewFolder Creates a new folder.

ParseName Creates and returns a FolderItem object that represents a specified item.

Property Description

ParentFolder Contains the parent Folder object.

Title Title of the folder.

Set objFolder = objShell _BrowseForFolder(0, "Please select a folder™, 0, "C:\")
objFolder _NewFolder (“'TestFolder')

Dim objFolderltem As Folderltem

Set objFolderltem = objFolder_ParseName(*'clock.avi'")

objFolder _CopyHere ('C:\AUTOEXEC.BAT')

Private Const FOF_NOCONFIRMATION = &H10

objFolder _MoveHere "c:\temp.txt", FOF_NOCONFIRMATION

IT (Not objFolderltem Is Nothing) Then .

= The Folderltems object

Property Description

Count Count of items in the collection.

Method Description

Item Retrieves the Folderltem object for a specified item in the collection.
Revision: 3/18/2012 Page 74 of 111

Copyright 2001-2012 by Susan J. Dorey

Set objFolderltem = objFolderltems.1tem(*'"NOTEPAD.EXE™)
Dim fldltem As Folderltem

For Each fldltem In Folderltems

nCount = objFolderltems.Count

= The Folderltem object:

Property Description

GetFolder If the item is a folder, contains the item's Folder object.
IsFolder Indicates if the item is a folder.

IsLink Indicates if the item is a shortcut.

ModifyDate Sets or retrieves the date and time that a file was last modified.

ModifyDate can be used to retrieve the data and time that a folder was
last modified, but cannot set it.

Name Sets or retrieves the item's name.

Parent Contains the item's parent object.

Path Contains the item's full path and name.

Size Contains the item's size, in bytes.

Type Contains a string representation of the item's type.

Set objFolder = objFolderltem.GetFolder

IT objFolderltem.IsFolder Then .

szReturn = objFolderltem_ModifyDate
objFolderltem._ModifyDate = ""01/01/1900 6:05:00 PM"
szReturn = objFolderltem._Name

objFolderltem_Name = "TEST.BAT"

szReturn = objFolderltem._Path

szReturn = objFolderltem.Size

szReturn = objFolderltem.Type

Prompt User for Folder-Directory with Shell APIs

You may want to examine the files within a directory and let the user identify the directory. This
can be done with two modules and uses two APIs in the shell32.dll file: SHGetPathFromIDList
and SHBrowseForFolder.

Revision: 3/18/2012 Page 75 of 111
Copyright 2001-2012 by Susan J. Dorey

Browse for Folder ? ill

What Folder wou want to select?

= @' Deskbop

ﬂ My Dacurments

SRR Computer: BSCWLEN4365
[Local Disk ()
- CD Drive (D)
3 (3:) EBIZShare on ‘Metdpp 6,1,3R2 filer in 5
E (H:) SDorew0l on ‘Mebapp 6.1.3R2 filer in SF
(- 2% (I:) share3 on ‘MetApp 6.1, 1R2 Filer in EDH 1
[+ My Network Places

<] I o
Ik I Cancel |

First module contains code to invoke browse folder dialog:
Private strFolderName As String
Private msgTitle, msgStatus

Sub InventoryDocuments()

msgTitle = "Inventory"
strFolderName = BrowseFolder('Please select a folder')
ITf strFolderName = """ Then Exit Sub " dialog box cancelled

msgStatus = MsgBox(''You selected" + vbCrLf + strFolderName, vbOKCancel,
msgTitle)

IT msgStatus = vbCancel Then Exit Sub

End Sub

Second module contains code to operate dialog box:
Option Compare Database

"This code was originally written by Terry Kreft.
"1t 1s not to be altered or distributed,

"except as part of an application.

"You are free to use it in any application,
"provided the copyright notice is left unchanged.
"Code courtesy of

"Terry Kreft

Private Type BROWSEINFO
hOwner As Long
pidlRoot As Long
pszDisplayName As String
IpszTitle As String
ulFlags As Long

Revision: 3/18/2012 Page 76 of 111
Copyright 2001-2012 by Susan J. Dorey

Ipfn As Long

IParam As Long

ilmage As Long
End Type

Private Declare Function SHGetPathFromIDList Lib "'shell32.dIl" Alias _
"SHGetPathFromIDListA"™ (ByVal pidl As Long, _
ByvVal pszPath As String) As Long

Private Declare Function SHBrowseForFolder Lib "shell32.dl1" Alias _
"SHBrowseForFolderA"™ (IpBrowselnfo As BROWSEINFO) _
As Long

Private Const BIF_RETURNONLYFSDIRS = &H1

Public Function BrowseFolder(szDialogTitle As String) As String
Dim X As Long, bi As BROWSEINFO, dwlList As Long
Dim szPath As String, wPos As Integer

With bi
-hOwner = hWndAccessApp
-IpszTitle = szDialogTitle
-ulFlags = BIF_RETURNONLYFSDIRS
End With

dwlList = SHBrowseForFolder(bi)
szPath = Space$(512)
X = SHGetPathFromIDList(ByVal dwlList, ByVal szPath)

IT X Then
wPos = InStr(szPath, Chr(0))
BrowseFolder = Left$(szPath, wPos - 1)
Else
BrowseFolder = vbNullString
End If
End Function

= The BROWSINFO structure used above has the following components:

Component Use
hwndOwner Handle to the owner window for the dialog box.
pidIRoot Pointer to an item identifier list (PIDL) specifying the location of the root folder

from which to start browsing. Only the specified folder and any subfolders that
are beneath it in the namespace hierarchy will appear in the dialog box. This
member can be NULL; in that case, the namespace root (the desktop folder) is

used.

pszDisplayName Address of a buffer to receive the display name of the folder selected by the user.
The size of this buffer is assumed to be MAX_PATH characters.

IpszTitle Address of a null-terminated string that is displayed above the tree view control

in the dialog box. This string can be used to specify instructions to the user.
ulFlags Flags specifying the options for the dialog box. This member can include zero or
a combination of the following values.

Revision: 3/18/2012 Page 77 of 111
Copyright 2001-2012 by Susan J. Dorey

Component

Revision: 3/18/2012

Use

BIF_BROWSEFORCOMPUTER

Only return computers. If the user selects anything other than a computer, the
OK button is grayed.

BIF_BROWSEFORPRINTER

Only allow the selection of printers. If the user selects anything other than a
printer, the OK button is grayed.

In Microsoft Windows XP, the best practice is to use an XP-style dialog, setting
the root of the dialog to the Printers and Faxes folder (CSIDL_PRINTERS).
BIF_BROWSEINCLUDEFILES

Version 4.71. The browse dialog box will display files as well as folders.
BIF_BROWSEINCLUDEURLS

Version 5.0. The browse dialog box can display URLs. The BIF_USENEWUI and
BIF_BROWSEINCLUDEFILES flags must also be set. If these three flags are not
set, the browser dialog box will reject URLs. Even when these flags are set, the
browse dialog box will only display URLSs if the folder that contains the selected
item supports them. When the folder's IShellFolder::GetAttributesOf method is
called to request the selected item's attributes, the folder must set the
SFGAO_FOLDER attribute flag. Otherwise, the browse dialog box will not
display the URL.

BIF_DONTGOBELOWDOMAIN

Do not include network folders below the domain level in the dialog box's tree

view control.

BIF_EDITBOX

Version 4.71. Include an edit control in the browse dialog box that allows the
user to type the name of an item.

BIF_NEWDIALOGSTYLE

Version 5.0. Use the new user interface. Setting this flag provides the user with a
larger dialog box that can be resized. The dialog box has several new capabilities
including: drag-and-drop capability within the dialog box, reordering, shortcut
menus, new folders, delete, and other shortcut menu commands. To use this flag,
you must call Olelnitialize or Colnitialize before calling SHBrowseForFolder.
BIF_NONEWFOLDERBUTTON

Version 6.0. Do not include the New Folder button in the browse dialog box.
BIF_NOTRANSLATETARGETS

Version 6.0. When the selected item is a shortcut, return the PIDL of the shortcut
itself rather than its target.

BIF_RETURNFSANCESTORS

Only return file system ancestors. An ancestor is a subfolder that is beneath the
root folder in the namespace hierarchy. If the user selects an ancestor of the root
folder that is not part of the file system, the OK button is grayed.
BIF_RETURNONLYFSDIRS

Only return file system directories. If the user selects folders that are not part of
the file system, the OK button is grayed.

BIF_SHAREABLE

Version 5.0. The browse dialog box can display shareable resources on remote
systems. It is intended for applications that want to expose remote shares on a
local system. The BIFE_NEWDIALOGSTYLE flag must also be set.
BIF_STATUSTEXT

Include a status area in the dialog box. The callback function can set the status

Page 78 of 111

Copyright 2001-2012 by Susan J. Dorey

Microsoft Access VBA Techniques

Component Use
text by sending messages to the dialog box. This flag is not supported when
BIF_NEWDIALOGSTYLE is specified.
BIF_UAHINT
Version 6.0. When combined with BIF_NEWDIALOGSTYLE, adds a usage hint
to the dialog box in place of the edit box. BIF_EDITBOX overrides this flag.
BIF_USENEWUI
Version 5.0. Use the new user interface, including an edit box. This flag is
equivalent to BIF_EDITBOX | BIF_NEWDIALOGSTYLE. To use
BIF_USENEWUIL you must call Olelnitialize or Colnitialize before calling
SHBrowseForFolder.
BIF_VALIDATE
Version 4.71. If the user types an invalid name into the edit box, the browse
dialog box will call the application's BrowseCallbackProc with the
BFFM_VALIDATEFAILED message. This flag is ignored if BIF_EDITBOX is not

specified.

Ipfn Address of an application-defined function that the dialog box calls when an
event occurs. For more information, see the BrowseCallbackProc function. his
member can be NULL.

1Param Application-defined value that the dialog box passes to the callback function, if

one is specified.
ilmage Variable to receive the image associated with the selected folder. The image is
specified as an index to the system image list.

Prompt User for Filename/Folder With FileDialog Object

= New with Office 2003 is the FileDialog object. It provides file dialog box functionality
similar to the functionality of the standard Open and Save dialog boxes found in Microsoft
Office applications. Requires a reference to Microsoft Office 11.0 Object Library.

Browse n B

Look in! | aee Local Disk () j @ = S
[C)AFPRLGIN
\,,;:?‘ crdcons
Histary Config.Msi
@Custom
_)Data

_2)Documents and Settings
My Documerks (LLDClient

B

@Macros
F MaOCache
Bﬁ _)Program Files
Deskkop RECYCLER
Syskem Yolure Information
o @Temp
L) WINDIOWS

Favarites

=]

g’é Folder name: ~| oK
Iy Metwork

Places Cancel

= The object can to used in four ways, determined by a single parameter, DialogType:

Action Constant
open a selected file msoFileDialogOpen
save a selected file msoFileDialogSaveAs
Revision: 3/18/2012 Page 79 of 111

Copyright 2001-2012 by Susan J. Dorey

Action Constant
select a path-file msoFileDialogFilePicker
select a folder (path) msoFileDialogFolderPicker

= Use the dialog box to prompt user for a path-filename:
Dim fd As FileDialog
Set fd = Application._FileDialog(msoFileDialogFilePicker)
Dim vrtSelectedltem As Variant
with fd
If _Show = -1 Then “ the Show method displays the dialog box
For Each vrtSelectedltem In _Selectedltems
MsgBox "The path is: " & vrtSelectedltem
Next vrtSelectedltem
Else "The user pressed Cancel.
End IFf
End With
Set fd = Nothing

= Use the dialog box to prompt user for a folder:

Sub GetDir()

Dim strDir As String

With Application.FileDialog(msoFileDialogFolderPicker)
-InitialFileName = "C:\"

-Show

strDir = _Selectedltems(1)
End With
MsgBox "You selected " & strDir
End Sub

= Object Methods:

object.Show displays the file dialog box, returns a Long Integer indicating the user’s action:

-1 user pressed action button
0 user cancelled
object.Execute carries out the user action

= Object properties:

Property Effect
Title title of file dialog box

Revision: 3/18/2012
Copyright 2001-2012 by Susan J. Dorey

Page 80 of 111

Property Effect
InitialFileName path and/or filename displayed initially; default seems to be
where user last was
You can use the ' and '?' wildcard characters when specifying the
file name but not when specifying the path. The *' represents any
number of consecutive characters and the '?' represents a single
character. For example, .InitialFileName = "c:\ ¢*s.txt" will return
both "charts.txt" and "checkregister.txt."
If you specify a path and no file name, then all files that are
allowed by the file filter will appear in the dialog box.
If you specify a file that exists in the initial folder, then only that
file will appear in the dialog box.
If you specify a file name that doesn't exist in the initial folder,
then the dialog box will contain no files. The type of file that you
specify in the InitialFileName property will override the file filter
settings.
If you specify an invalid path, the last-used path is used. A
message will warn users when an invalid path is used.
object.InitialFileName = "C:\"
Initial View refers to MsoFileDialogView constant representing initial
presentation
msoFileDialogViewDetails
msoFileDialogViewLargelcons
msoFileDialogViewList
msoFileDialogViewPreview
msoFileDialogViewProperties
msoFileDialogViewSmalllcons
msoFileDialogViewThumbnail This constant is only available
in conjunction with Microsoft Windows 2000 or Microsoft
Windows Millennium Edition, or later.
msoFileDialogViewWebView Not available. If you select this
constant, the default view will be used

AllowMultiSelect True if user is allowed to select multiple files; default seems to be
True
SelectedItems returns a FileDialogSelectedItems collection, a list of the paths of

the selected files; objects in the collection are variants

= Subordinate ojects:

FileDialogFilters collection
Dim fd As FileDialog
Set fd = Application.FileDialog(msoFileDialogFilePicker)
Dim vrtSelectedltem As Variant

with fd

.Filters.Clear "Empty the list by clearing the FileDialogFilters
collection.

_.Filters_Add "All files", "*_*" "Add a filter that includes all
files.

"Add a filter that includes GIF and JPEG images and make it the first
item in the list.
_.Filters_Add "Images', "*.gif; *_jpg; *.jpeg", 1

Revision: 3/18/2012 Page 81 of 111
Copyright 2001-2012 by Susan J. Dorey

IT _Show = -1 Then
End With
FileDialogSelectedItems collection

= Use the dialog box to prompt user for a path-filename:

Dim fd As FileDialog
Set fd = Application.FileDialog(msoFileDialogFilePicker)
Dim vrtSelectedltem As Variant
with fd
If .Show = -1 Then “ the Show method displays the dialog box
For Each vrtSelectedltem In _Selectedltems
MsgBox “The path is: “ & vrtSelectedltem
Next vrtSelectedltem
Else "The user pressed Cancel.
Exit Sub MISSING CODE
End If
End With
Set fd = Nothing

A run-time error will occur if the Filters property is used in conjunction with the Clear, Add, or
Delete methods when applied to a Save As FileDiaog object. For example,
Application.FileDialog(msoFileDialogSaveAs).Filters.Clear will result in a run-time error.

Walking a Directory Structure

An excellent example of recursive processing is walking a file system's directory structure.
Here's an example using the FileSystemObject to walk a given directory structure: You can use it
as a framework upon which to add code to do things such as read the files.

Sub WalkinDaTree()

Dim fso As Object

Set fso=CreateObject(“Scripting.FileSystemObject™)
strStartPath="C:\”

ParseFolders (fso, strStartPath)

End Sub

Sub ParseFolders(objFSO, strPath)

Dim ThisFolder, ThisFolderSubs

Set ThisFolder=0bjFSO.GetFolder(strPath)

“ put code here to read files

Set ThisFolderSubs=ThisFolder.SubFolders

For Each objFolder in ThisFolderSubs
“Debug.Print strPath
ParseFolders objFSO, objFolder.Path
Next objFolder

End Sub

The code to read all files in each folder is in two parts. The first is placed where ‘put code here is
located above.
Set fs = ThisFolder.Files

Revision: 3/18/2012 Page 82 of 111
Copyright 2001-2012 by Susan J. Dorey

For Each f In fs
LogFile ThisFolder.Path, f.Name, f.DatelLastModified
Next F

The second part is a sub procedure:

Sub LogFile(p, fn, dt)

* there will be a problem if the filename has an apostrophe in it!
FindString = """
ReplaceString =
fno = Replace(fn, FindString, ReplaceString)
DoCmd.SetWarnings False

strSQL = "INSERT INTO Doclnventory (Path, Filename, LastSaveDateTime) VALUES

G

remove apostrophe

&p & ™, " & fno + T, #' & dt & "H)"
DoCmd.RunSQL strSQL
DoCmd.SetWarnings True
End Sub

Use Dir To Capture Filenames

While this can be done, there is a better function.

Dir function: Returns a string representing the name of a file, directory, or folder that matches a
specified pattern or file attribute, or the volume label of a drive.

Parameters:

= Pathname: Optional. String expression that specifies a file name, directory or folder name,
or drive volume label. You can use multiple-character (*) and single-character (?) wildcards
to specify multiple files. You must supply a PathName the first time you call the Dir
function. Subsequent calls to the Dir function may be made with no parameters to retrieve
the next item.

= Attributes: Optional. Enumeration or numeric expression whose value specifies file
attributes. If omitted, returns files that match PathName, but have no attributes. There are
several values. Value “vbNormal” specifies files with no attributes. Value “vbDirectory”
specifies directories or folders in addition to files with no attributes.

Each use of Dir() returns one string. In the following example if more than one *.INI file exists,
the first file found is returned.

MyFile = Dir('C:\WINDOWS*.INI'")

Call Dir again without arguments to return the next *.INI file in the same directory:

MyFile = DirQ

Use the VBA Dir function to capture the names of files within a directory and load them into an
array:

Function GetAllFilesInDir(ByVal strDirPath As String) As Variant
" Loop through the directory specified in strDirPath and save each
" file name iIn an array, then return that array to the calling
" procedure.
" Return False if strDirPath is not a valid directory.
Dim strTempName As String
Dim varFiles() As Variant

Revision: 3/18/2012 Page 83 of 111
Copyright 2001-2012 by Susan J. Dorey

Dim IngFileCount As Long
On Error GoTo GetAllFiles_Err

" Make sure that strDirPath ends with a "\" character.
IT Right$(strDirPath, 1) <> "\" Then

strDirPath = strDirPath & "™\"
End If

" Make sure strDirPath is a directory.
1T GetAttr(strDirPath) = vbDirectory Then
strTempName = Dir(strDirPath, vbDirectory)
Do Until Len(strTempName) = 0O
" Exclude ".", "._..".
IT (strTempName <> ".'") And (strTempName <> "_._.") Then
" Make sure we do not have a sub-directory name.
IT (GetAttr(strDirPath & strTempName) _
And vbDirectory) <> vbDirectory Then
" Increase the size of the array
to accommodate the found filename
and add the filename to the array.
ReDim Preserve varFiles(IngFileCount)
varFiles(IngFileCount) = strTempName
IngFileCount = IngFileCount + 1
End 1If
End If
" Use the Dir function to find the next Filename.
strTempName = Dir(Q)
Loop
" Return the array of found files.
GetAllFilesInDir = varFiles
End 1If
GetAllFiles_End:
Exit Function
GetAllFiles_Err:
GetAllFilesInDir = False
Resume GetAllFiles_End
End Function

Dir can also be used recursively to get files in subdirectories. See example at
http://support.microsoft.com/kb/q185476/

Rename File

This uses an old VBA statement:
Name oldname As newname

In this statement, both names must include a full path. Both must be on the same drive. Name
arguments cannot include multiple-character (*) and single-character (?) wildcards.

If the path in newname exists and is different from the path in oldname, the Name statement
moves the file to the new directory or folder and renames the file, if necessary. If newname and
oldname have different paths and the same file name, Name moves the file to the new location

Revision: 3/18/2012 Page 84 of 111
Copyright 2001-2012 by Susan J. Dorey

and leaves the file name unchanged. Using Name, you can move a file from one directory or
folder to another, but you can't move a directory or folder.

Using Name on an open file produces an error. You must close an open file before renaming it.

Copy a File

This uses an old VBA statement:
FileCopy source, destination

The required source argument is a string expression that specifies the name of the file to be
copied. The source may include directory or folder, and drive.

The required destination argument is a string expression that specifies the target file name.
The destination may include directory or folder, and drive.

Using FileCopy on an open file causes an error. You must close an open file before copying it.

Delete File

Deletes files from a disk. It does not send the file to the Recycle Bin.
Kill pathname

The required pathname argument is a string expression that specifies one or more file names to
be deleted. The pathname may include the directory or folder, and the drive.

Kill supports the use of multiple-character (*) and single-character (?) wildcards to specify
multiple files.

An error occurs if you try to use Kill to delete an open file. Note to delete directories, use the
RmDir statement.

Delete Folder

Use old VB RmDir statement. The path may include the drive. If no drive is specified, RmDir
removes the directory or folder on the current drive. An error occurs if you try to use RmDir on a

directory or folder containing files.
RmDir path
RmDir "MYDIR™

File and Office Document Properties

Most files have the general file properties Type, Location (path), Size, Date Created, Date Last
Modified, Date Last Accessed. Microsoft Office has several additional document properties for
each of its applications, e.g., Title, Author, Category.

File properties are generally accessible when the file is open in its native application with menu
File, Properties and also in Windows Explorer with menu File, Properties. For Office documents
there are three groups of properties, each appears on its own tab: General properties, Summary
properties, and Custom properties. The General file properties are different from the Summary
properties; one example: the summary property Date Last Saved is not the source of the Date
Modified in Windows Explorer.

Revision: 3/18/2012 Page 85 of 111
Copyright 2001-2012 by Susan J. Dorey

File/document properties are accessible with VBA code in four different ways depending on

whether the file is open or closed.

File/document properties in closed files can be accessed with the DSO OLE Document
Properties Reader 2.1, Dsofile.dll. A reference must be set to this. There is information
about it on Microsoft’s website: http://support.microsoft.com/default.aspx?scid=kb;EN-
US;(Q224351 and
http://www.microsoft.com/technet/scriptcenter/resources/tales/sg0305.mspx. This is the
only program that accesses all the properties with read/write abilities. Apparently DSOFile
only reads OLE Structured Storage files (per Pearson).

File properties such as the created date, the last modified date, or the number of bytes in a
file are accessed in closed files with the VBA FileDateTime and FileLen functions.

The Scripting.FileSystemObject can access the file properties with the File object: Attributes,
DateCreated, DateLastAccessed. DateLastModified, Drive, Name, ParentFolder, Path,
ShortName, ShortPath, Size, Type.

Document properties in open files are accessed by the object:

Office Application Object Properties Object
Word ActiveDocument BuiltInProperties

or BuiltinDocumentProperties

Excel ActiveWorkbook BuiltiInDocumentProperties

Function FileDateTime returns a Variant (Date) that indicates the date and time when a file was
created or last modified.

Syntax: FileDateTime(pathname)

The required pathname argument is a string expression that specifies a file name. The pathname
may include the directory or folder, and the drive.

Function FileLen returns a Long specifying the length of a closed file in bytes.
Syntax: FileLen(pathname)

Revision: 3/18/2012 Page 86 of 111
Copyright 2001-2012 by Susan J. Dorey

Microsoft Access VBA Techniques

Mew_users.xls Properties

General | Security I:ustom| Summary

Property Value
Description
[¥ Title Mew users spreadsheet
[subject ADST scripking and Excel
B’Category ADST scripking
[keywords scripting; ADSI; Excel
[scale M
[Links Dirty? o
[¥ Comments Sample spreadsheet used ko create us,..
Origin
[author Greg Stemp
[Last saved By Greg Stemp
[¥ Revision Number
B.¢opplication Mame Microsoft Excel
B'Company Microsoft Corporation
[Date Created /2412004 5116 AM
[¥ Date Last Saved 10/11/2004 10:15 &M

L_ox]

Cancel]

The summary properties for an Office document file are:

Application Name Number of Characters (with spaces)
Author Number of Hidden Slides
Category Number of Lines

Comments Number of Multimedia Clips
Company Number of Notes

Creation Date Number of Pages

Format Number of Paragraphs
Hyperlink Base Number of Slides

Keywords Number of Words

Last Author (aka Last Saved By)? Revision Number

Last Print Date Security

Last Save Time Subject

Manager Template

Number of Bytes Title

Number of Characters Total Editing Time

The summary properties which DSOFile reads were new with Office 2002; files created with

earlier versions do not have the

properties—so error handling should accommodate this.

If you read a property that does not exist, an automation error can occur. All properties that exist
are readable, but only the following properties are writeable:

2 The source of this property is the Author in the Office application’s User Information, Name (accessed via

menu Tools, Options). The setting of this value is up to the individual user of Word et al.

Revision: 3/18/2012

Page 87 of 111

Copyright 2001-2012 by Susan J. Dorey

Author
Category
Comments
Company
Keywords
LastEditedBy
Manager
Subject

Title

For Open Files Use Object BuiltinDocumentProperties

Properties:

= Application: returns the container application (like Word).

= Creator: Returns a 32-bit integer that indicates the application in which the specified object
was created. For example, if the object was created in Microsoft Word, this property returns
1297307460, which represents the string "MSWD"; in Microsoft Excel, this property returns
1480803660. Originally used by Mac computers.

= LinkSource: applies only to custom document properties. Returns or sets the source of a
linked custom document property.

= LinkToContent: applies only to custom document properties. Boolean. Returns or sets
whether the value of the custom document property is linked to the content of the container
document (True) or is static (False).

= Name: Returns or sets the name of the specified object.

= Parent: Returns the Parent object for the specified object.

= Type: Returns or sets the document property type. Read-only for built-in document
properties; read/write for custom document properties. The type reflects the filename
extension and the text labeled “File Type” on the FileTypes tab of the “Folder Options”
dialog box. For example a file with an extension of “doc” has a Type of “Microsoft Word
Document.” On my computer a file with extension of “txt” has a Type of “Programmer's
File Editor (32-Bit)” because that is the program I configured to edit txt files.

= Value: Returns or sets the value of a document property. If the container application doesn't
define a value for one of the built-in document properties, reading the Value property for
that document property causes an error.

Methods:
" Delete: Removes a custom document property.

Example of accessing Word document properties from Access:
ActiveDocument.CustombDocumentProperties(*'CustomNumber') .Delete
Sub DisplayPropertylnfo(dp As DocumentProperty)
MsgBox "value = " & dp.Value & Chr(13) & _
“"type = " & dp.Type & Chr(13) & _
"name = " & dp.Name
End Sub
Example of accessing Excel document properties from Access:
ActiveWorkbook .Bui ltInDocumentProperties(“Title””) .Value = “Surprise”
[NOTE: When I used code like this nothing happened. Do not know why.]

= This example shows how to use VBA code to display a Word document's built in document
properties.

Revision: 3/18/2012 Page 88 of 111
Copyright 2001-2012 by Susan J. Dorey

Subroutine ShowBuiltiInDocumentProperties loops through the document's
BuiltiInDocumentProperties collection, displaying the property values in the Debug window.

" Display the active document®s built-in properties.
Public Sub ShowBuiltlInDocumentProperties()
Dim dp As DocumentProperty
On Error Resume Next
For Each dp In ActiveDocument.BuiltlnDocumentProperties
Debug.Print dp.Name & ™: ';
Debug.Print dp.Value
IT Err.Number <> 0 Then

Err.Clear
End IFf
Next dp
End Sub
= This code sets the Title property.
myWbk .Bui I'tinDocumentProperties("Title™)_Value = "eBusiness Documentation
Library: " & myWbk_Worksheets(1).Name

For Closed Files Use DSOFile.OleDocumentProperties

Methods:

= Open: Open the file to read the document properties; all properties are read in and cached
on open. Has parameters. Use ReadOnly parameter to open file for read-only access. You
can also use parameter dsoOptionOpenReadOnlylfNoWriteAccess flag if you want Dsofile
to try to open the file for editing and if it cannot, to open it as read only.

= Save: Save the changes (to properties) made to the file.

= Close: Close the file and release the file lock.

Properties:

= IsReadOnly: indicates if file is opened as read-only.

= SummaryProperties: returns the collection of standard Office Summary properties.

= CustomProperties: returns the collection of custom properties. Each custom property has a
unique name and is accessible in the collection by that name.

= IsDirty: indicates that property was changed.

= Path: returns the path of the document.

= Name: returns the file name of the document.

The Open method syntax:

Open(sFileName As String, [ReadOnly As Boolean = False], [Options As
dsoFileOpenOptions = dsoOptionDefault])

There are built-in constants for the file open option: dsoOptionDefault,
dsoOptionDontAutoCreate, dsoOptionOnlyOpenOLEFiles,
dsoOptionOpenReadOnlylfNoWrite Access, dsoOptionUseMBCStringsForNewSets.

The various properties can be accessed:

Dim FileName As String
Dim DSO As DSOFile._OleDocumentProperties
Set DSO = New DSOFile.OleDocumentProperties

Revision: 3/18/2012 Page 89 of 111
Copyright 2001-2012 by Susan J. Dorey

FileName = "C:\Bookl.xls"

DSO.Open sfilename:=FileName

Debug.Print DSO.SummaryProperties.ApplicationName
Debug.Print DSO.SummaryProperties.Author
DSO.Close

Set objFile = CreateObject("'DSOFile.OleDocumentProperties™)
objFile.Open("'C:\Scripts\New_users.xlIs")
MsgBox "Author: " & objFile.SummaryProperties.Author

Set DSO = New DSOFile.OleDocumentProperties

DSO.Open FileName, False, dsoOptionOpenReadOnlylfNoWriteAccess
strComments = DSO.SummaryProperties.Comments

DSO.Close

Set objFile = CreateObject("'DSOFile.OleDocumentProperties™)
objFile.Open('C:\Scripts\New_users.xlIs")
objFile.SummaryProperties.Title = "New title added via a script"”
objFile._Save

Const msoPropertyTypeDate = 3

Set objFile = CreateObject("'DSOFile.OleDocumentProperties')
objFile.Open(*'C:\Scripts\New_users._xlIs")
objFile_CustomProperties.Add "Date Reviewed", msoPropertyTypeDate
Set objProperty = objFile.CustomProperties.ltem(''Date Reviewed')
objProperty.Value = #2/16/2005#

objFile._Save

The actual DSOFile summary property names from the Object Browser are:

Revision: 3/18/2012
Copyright 2001-2012 by Susan J. Dorey

Page 90 of 111

e ApplicationMame
e Author

el ByteCount

EH Category

e CharacterCount
e CharacterCountwithSpaces
R Comments

EH Company

el DateCreated

el DatelastPrinted
e DatelastSaved
&' HiddenSlideCount
e [Keywiords

e LastSavedBy

EH LineCount

EH Manager

e mMultimediaClipCount
el MoteCount

EH PageCount

B! ParagraphCount
ey PresentationFormat
e RevisionMumber
R SharedDocument
EH SlideCount

e Subject

e Template

i Thumbnail

e Title

e TotalEditTime

e5 Wersion

e WordCount

Get UNC

When you want to convert a network file path that includes a drive letter to the UNC path

(\ \server\share\ path) use the WNetGetUniversalName function in the WNet APL. See
msdn.microsoft.com\library for details. This approach only works for Windows 98/NT and not
for local drives.

Private Declare Function WNetGetUniversalName Lib "mpr' Alias
"WNetGetUniversalNameA"™
(Byval IpLocalPath As String, _
ByVal dwlnfolLevel As Long, _
IpBuffer As Any, _
IpBufferSize As Long) As Long

Private Const UNIVERSAL_NAME_INFO_LEVEL As Long = 1
Private Const UNIVERSAL_NAME_BUFFER_SIZE = 255

Private Const ERROR_SUCCESS = 0
Private Const ERROR_MORE_DATA = 234
C

Private Const ERROR_BAD_DEVICE = 1200

Revision: 3/18/2012 Page 91 of 111
Copyright 2001-2012 by Susan J. Dorey

Private Type UNIVERSAL_NAME_INFO
IpUniversalName
buf(UNIVERSAL_NAME_BUFFER_SIZE - 4)

As Long
As Byte

End Type

Public Function GetUNC(Path)
Dim msgTitle As String
Dim res As Long
Dim sBufferLen As Long
Dim sBuffer As UNIVERSAL_NAME_INFO
sBufferLen = UNIVERSAL_NAME_BUFFER_SIZE
Dim StartLoc As Long
msgTitle = "Get UNC"
res = WNetGetUniversalName(Path, UNIVERSAL_NAME_INFO_LEVEL, sBuffer,
sBufferLen)
IT res = 0 Then
StartLoc = sBuffer.lIpUniversalName - VarPtr(sBuffer) - 3
GetUNC = Mid$(StrConv(sBuffer.buf, vbUnicode), StartLoc,
InStr(StrConv(sBuffer_buf, vbUnicode), vbNullChar) - 1)
Elself res = ERROR_MORE_DATA Then
MsgBox "API call error: ERROR_MORE_DATA. Cannot continue. Buffer Length = "

& sBufferLen & .” Actual length of buffer = " & Len(sBuffer), , msgTitle
GetUNC = "
Else
MsgBox "API call error: " & res & " Cannot continue. Buffer Length = " &
sBufferLen, , msgTitle
GetUNC = """
End IFf

End Function

DAO Objects

= The DAO object model is documented in the Access help file. Key objects are:
DBEngine

QueryDef

Recordset

TableDef

= Refer to the current MDB file:
DBEngine(0)(0)

* You can add a QueryDef:

Sub SaveQuery(PortalQuerySQL, NewQueryName)

" gets run-time error 3012 when trying to add query that already exists
" needs error trapping

* cannot tell if query exists before adding it

Dim gqdf As QueryDef

On Error GoTo StopHere

Set qdf = DBEngine(0)(0).CreateQueryDef(NewQueryName, PortalQuerySQL)
StopHere:

DBEngine(0)(0) -Close

End Sub

= Alternate, simpler, code to add a QueryDef:

Revision: 3/18/2012
Copyright 2001-2012 by Susan J. Dorey

Page 92 of 111

Dim qdf As QueryDef
On Error Resume Next
Set qdf = DBEngine(0)(0).CreateQueryDef(NewQueryName, PortalQuerySQL)
DBEngine(0)(0) .Close

* You can modify a QueryDef’s SQL:
Function ModifyQuery(PortalPath, BaseQuery)
" function appends WHERE clause to end of query
" except when original query has an ORDER BY clause -- WHERE must precede it
PortalQuerySQL = BaseQuery
Dim qdf As QueryDef
IT Not PortalPath = "All" Then
Set qdf = DBEngine(0)(0).QueryDefs(BaseQuery)
z = qdf.SQL
pos = InStr(z, "ORDER BY')
IT pos = 0 Then

p = InStrRev(z, ;')
y = Left(z, p - 1)
wh = " WHERE [Portal].[Path] = """ + PortalPath + """
PortalQuerySQL =y + wh + ";"
Else

leftt = Left(z, pos - 1)
rightt = Mid(z, pos)

wh = " WHERE [Portal].[Path] = "' + PortalPath + "= "
PortalQuerySQL = leftt + wh + rightt
End If

End If
ModifyQuery = PortalQuerySQL
End Function

= Istill haven’t found a way to test for the existence of a QueryDef, but you can add code to
handle the situation where the code tries to add one that already exists.

On Error Goto errorHandle

Set QD = MyDB.CreateQueryDef(*'queryname')

errorHandle:

IT Err.Number = 3012 Then " The querydef exists

End If

= Microsoft provides this generic code to test for the existence of a DAO object. It is based on
getting the Name of the object and ignoring any run-time error.

Function DoesObjectExist (ObjectType$, ObjectName$)

On Error Resume Next

Dim Found_Object, Find_Object As String, ObjectNum As Integer

Dim DB As Database, T As TableDef

Dim Q As QueryDef, C As Container

Dim Msg As String

Found_Object = -1

Set DB = dbengine(0)(0)

Select Case ObjectType$

Case "Tables"
Find_Object

Case "Queries"
Find_Object = DB.QueryDefs(ObjectName$) .Name

Case Else

DB.TableDefs(ObjectName$) .Name

Revision: 3/18/2012 Page 93 of 111
Copyright 2001-2012 by Susan J. Dorey

IT ObjectType$ = "Forms™ Then
ObjectNum = 1

Elself ObjectType$ = "Modules"™ Then
ObjectNum = 2

Elself ObjectType$ = "Reports" Then
ObjectNum = 4

Elself ObjectType$ = "Macros"™ Then
ObjectNum = 5

Else

Msg = "Object Name '""' & ObjectType & """ is an invalid”
Msg = Msg & " argument to function ObjectExists_20!"
MsgBox Msg, 16, "ObjectExists_20"
Exit Function

End If

Set C = DB.Containers(ObjectNum)

Find_Object = C.Documents(ObjectName$) .Name

End Select

If Err = 3265 Or Find_Object = """ Then
Found_Object = 0

End If

DoesObjectExist = Found_Object
End Function

Using Automation

The following is copied from
http://msdn.microsoft.com/archive/default.asp?url=/archive/en-

us/dnarvisio/html/automatingmsofficevisio.asp

Beware of server behavior: One thing to keep in mind when working with other applications is
that they behave differently to Automation commands. For example, some don’t display their
main window when launched. Some terminate automatically when the object variable that refers
to them is reinitialized while others keep running. The table below lists some of the differences
between applications in the Microsoft Office suite.

Application Reaction To Automation Commands

Microsoft Access Launches as an icon with a Visible property of FALSE. Changing
the Visible property to TRUE restores the main window; changing
it to FALSE minimizes the window. Additionally, destroying the
object variable causes Access to terminate if it was launched via
Automation. You can also use the Quit method.

Microsoft Excel Launches as a hidden window with a Visible property of FALSE.
Changing the Visible property to TRUE "un-hides" the window.
Destroying the object variable does not cause Excel to terminate.
Use the Quit method instead.

Microsoft PowerPoint Launches as a hidden window with a Visible property of FALSE.
Changing the Visible property to TRUE "un-hides" the window.
Destroying the object variable does not cause PowerPoint to
terminate. Use the Quit method instead.

Revision: 3/18/2012 Page 94 of 111
Copyright 2001-2012 by Susan J. Dorey

Application Reaction To Automation Commands

Microsoft Outlook Launches as a hidden window. The Application object does not
have a Visible property. There is no way to make it visible using
the object model. You must use the Windows API instead.
Destroying the object variable does not cause Outlook to terminate.
Use the Quit method instead.

Microsoft Word Launches as a hidden window with a Visible property of FALSE.
Changing the Visible property to TRUE "un-hides" the window.
Destroying the object variable does not cause Word to terminate.
Use the Quit method instead.

Read MDB From Word Document

You can access data in a table or query via a DAO recordset. You can access forms, reports, and
queries via an Access object. You can do both!

Using DAO

The following code performs a process for every record in a query, including setting the value of
a field.

Private dbsMigrate As Database

Private rstQ As Recordset

Set dbsMigrate = DBEngine.OpenDatabase(mdbName)

Set rstQ = dbsMigrate.OpenRecordset(""WordFilesNotChecked™)

Application.ScreenUpdating = False

With rstQ

Do Until _EOF

Edit
I[WordDocReadOnlyFlag]
.Update
-MoveNext

Loop

.Close

End With

Application.ScreenUpdating = True

Set rstQ = Nothing

Set dbsMigrate = Nothing

True

Using Access Objects

The following code opens a new instance of Access, counts records in a query, opens a query in
datasheet view, closes a form if it is open (which it would be if it were the start up form), and
closes the instance. If the form were left open, Access would remain open. If the query is opened
(a conditional action) then you can see the database window behind it; when the query datasheet
is closed, Access closes.

Private objAccess As Access.Application
Set objAccess = New Access.Application
objAccess.OpenCurrentDatabase mdbName

Revision: 3/18/2012 Page 95 of 111
Copyright 2001-2012 by Susan J. Dorey

IT objAccess.DCount(*"*", "WordDocsReadOnly') > O Then objAccess.DoCmd.OpenQuery

"WordDocsReadOnly™

IT objAccess.CurrentProject.AllForms(""Main').IsLoaded = True Then
objAccess.DoCmd.Close acForm, "Main"

End IFf

Set objAccess = Nothing

Using an ActiveX Control in the Word Document

An ActiveX control can be inserted in a document (text) with Control Toolbox toolbar. These
controls have events, including Click. Event procedures reside in the document, not a module;
use the toolbar’s View Code icon to access them.

Private Sub cmdTest_Click()

Dim wrkJet As Workspace

Dim dbs As Database

Set wrkJet = CreateWorkspace(''us', "admin™, ", dbUseJet)
Workspaces.Append wrkJet

Set dbs = wrkJet._OpenDatabase(*'c:\data\KMI\Interview Database\KMI
Interviews.mdb™)

Dim rstint As Recordset

Set rstint = dbs.TableDefs("Interview') .OpenRecordset(dbOpenForwardOnly)
MsgBox rstint_Fields(0) & ', " & rstint_Fields(1)

End Sub

Populate Non-Table Data in a Form or Report

The standard way of populating data in a form or report is to source a table field in the
ControlSource property of a text control. This works fine as long as the data is in a table. But if it
isn’t you will have to rely on other techniques.

(1) txtControl.Value = “data”
(2) use OpenArgs to pass data in an OpenReport statement
(3) wuse a public function as a control source

The first technique works when the code is located in the form/report module. It does not appear
to work when the code is in a standard code module.

The second technique works well:
While a MsgBox is a convenient and simple tool for presenting ad hoc data, it has its limitations:
it can present no more than 1024 characters of text.

A solution that can accommodate a virtually unlimited amount of text is a report with a text box
control whose ControlSource is =OpenArgs (OpenArgs is a report property) and with the Can
Grow = Yes property. The program formats the ad hoc data with vbCrLfs then passes it to the
report:

DoCmd.OpenReport “InvalidFilenames”, acPrintPreview, , , , msgText

where msgText is the ad hoc data.

As to “unlimited,” the maximum number of characters in a text box is 65,535. It will overflow to
additional pages.

Revision: 3/18/2012 Page 96 of 111
Copyright 2001-2012 by Susan J. Dorey

The third technique also works well: put the data into a public variable, use a public function to
return the value of the variable, then set a text control’s ControlSource to “=<function name>." Be
careful of the scope of the variable to ensure it exists when the form/report needs it. This
technique can be combined with OpenArgs in order to pass two different texts.

Custom Object as Class

A class module can expose data (as properties), methods (as procedures), and events to other
processes within the same project (in this case an Access database) or to a different project. I am
not interested in the second case, and at least for VBA in Office applications it may be moot.

Accessing a class module within the same Access database:

You can access a public variable directly. For example,

(in the class module)

Public pubString As String

(in a code module)

pubString = *"can | access a public variable in a class module?"
MsgBox pubString " displays the text in the line above

You can access a public property directly. For example,

(in the class module)

Public Property Let mProcessName(varName)
pName = varName

End Property

Public Property Get mProcessName()
mProcessName = pName

End Property

(in a code module)

pProcessName = "'why"

MsgBox pProcessName " displays the text in the line above

You must have an object reference to access a public procedure (method). In other words if
the class module named ClassTest1 has a Public Sub TryThis() and you call it as
ClassTest1.TryThis, the call will fail.

You can encapsulate some operations such that their processing details are separate from regular
code modules by creating them as a class module. The name of the class module becomes the
name of the object. The object has properties and methods which are invoked by other code.

A class module is created with menu Insert, Class Module. It is named in the Properties window
(accessed with [F4] or menu View, Properties Window). It can have private procedures (for its
own use) and public procedures (as its interface with external programs). All of its variables are
private; the only way it can provide public access to a variable with a property statement.

Properties are established with:

Statement Use
Property Let set the value of a property
Property Get return the value of a property
Property Set set a reference to an object
Revision: 3/18/2012 Page 97 of 111

Copyright 2001-2012 by Susan J. Dorey

Methods are established with:

Statement Use

Public Sub performs an action and does not return a
value

Public Function performs an action and does return a value of
a specified type

The calling “program” must first declare an object variable and instantiate the object:
Private abc As ABasicClass * declare the object variable
Dim abc As New ABasicClass ’ create an instance of the object

Then it can access the object’s properties and methods:
x = abc.PropertyA
abc.MethodB

A class-object can have events. There are built-in events:

Event When Run

Initialize after an object is instantiated, see below for
details

Terminate after all references to an instance of that class

are removed from memory

The built-in event procedures are run automatically when the event occurs. The procedures are
identified by their name:

Private Sub ABasicClass_Initialize()

Private Sub ABasicClass_Terminate()

When the Initialize event is fired depends on how the class is instantiated:
Instantiating Method Result

Dim abc As New ABasicClass the event is fired when the first reference is
made to a member of the class, NOT when
the class is declared as New

abc.AnyProp = sAnyVal when this follows the New declaration, the
event is fired

Dim abc As ABasicClass the event is fired with the Set statement
Set abc = new ABasicClass

The Instancing property of a class determines its visibility (also called scope) of the class. The

design-time property is accessible on the Properties Window of the IDE.

= The default property is 1 - Private, which means that the class can be accessed and created
only within the project in which it is contained. Other projects have no knowledge of the
class. They can't create objects based on that class. In most applications, Private is adequate.

= The other value of the Instancing property is 2 - PublicNotCreatable. When the Instancing
property of the class is PublicNotCreatable, other projects can declare variables of this class
type, but cannot use the Set = New syntax to create an instance of the class.

Revision: 3/18/2012 Page 98 of 111
Copyright 2001-2012 by Susan J. Dorey

Normally the statement Set abc = Nothing fires the Terminate event. However if code has a live
reference to another object in the class, the event is not fired.

Custom events are possible. Events can be declared and fired only within object modules—
Form, User Control, and Class. Events can be handled only within object modules.

Statement Result
Event declares a user-defined event

Syntax: [Public] Event procedurename [(arglist)]
The arglist argument has the following syntax

and parts:

[ByVal | ByRef] varname[()] [As type]

RaiseEvent fires an event explicitly declared at module
Syntax: level within a class, form, or document

RaiseEvent procedurename [(argumentlist)]

Events cannot have named arguments, Optional arguments, or ParamArray arguments. Events
do not have return values.

You can't use RaiseEvent to fire events that are not explicitly declared in the module. For
example, if a form has a Click event, you can't fire its Click event using RaiseEvent. If you
declare a Click event in the form module, it shadows the form’s own Click event. You can still
invoke the form’s Click event using normal syntax for calling the event, but not using the
RaiseEvent statement.

Property Get/Set/Let

The Property Get/Let/Set statements declare the name, arguments, and code that forms the body
of the Property procedure. A non-object property will have two statements, Property Get and
Property Let, each with the same property name.

Property Get syntax:

[Public | Private | Friend] [Static] Property Get name [(arglist)] [As type]
[statements]

[name = expression]

[Exit Property]

[statements]

[name = expression]

End Property

The arglist argument has the following syntax and parts:
[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type] [= defaultvalue]

If not explicitly specified using Public, Private, or Friend, Property procedures are public by
default. If Static is not used, the value of local variables is not preserved between calls.

Like a Sub and Property Let procedure, a Property Get procedure is a separate procedure that can
take arguments, perform a series of statements, and change the values of its arguments.
However, unlike a Sub or Property Let procedure, you can use a Property Get procedure on the

Revision: 3/18/2012 Page 99 of 111
Copyright 2001-2012 by Susan J. Dorey

right side of an expression in the same way you use a Function or a property name when you
want to return the value of a property.

Example:
Dim CurrentColor As Integer
Const BLACK = 0, RED = 1, GREEN = 2, BLUE = 3
Property Get PenColor() As String
Select Case CurrentColor
Case RED
PenColor = "Red"
Case GREEN
PenColor = "Green"
Case BLUE
PenColor = "Blue"
End Select
End Property

* The following code gets the color of the pen
" by calling the Property Get procedure (acts like a function).
ColorName = PenColor

Property Let syntax:

[Public | Private | Friend] [Static] Property Let name ([arglist,] value)
[statements]

[Exit Property]

[statements]

End Property

Example:
Dim CurrentColor As Integer
Const BLACK = 0, RED = 1, GREEN = 2, BLUE = 3

Property Let PenColor(ColorName As String)

Select Case ColorName " Check color name string.

Case "'Red"

CurrentColor = RED " Assign value for Red.
Case "'Green"

CurrentColor = GREEN " Assign value for Green.
Case "Blue"

CurrentColor = BLUE " Assign value for Blue.
Case Else

CurrentColor = BLACK " Assign default value.

End Select
End Property

* The following code sets the PenColor property
" by calling the Property let procedure.
PenColor = "Red"

Controlling a Form by a Class Object

It is possible to have a class object control a form (a specialized class object). What follows is an
example of a code module which instantiates a class object which instantiates a form object.

Revision: 3/18/2012 Page 100 of 111
Copyright 2001-2012 by Susan J. Dorey

This technique uses a Collection object to refer to a related group of items as a single object. The
Collection object has three methods: Add, Remove, and Item. It has one property: Count. The
Add method syntax is:

object_Add item, [key], [before], [after]

where key is a unique string expression used to identify the item in the collection

Item method syntax is:

object.Item(index)

where index is either (1) a numeric value corresponding to the item’s position in the collection or
(2) a string expression corresponding to the key argument.

Remove method syntax is the same as for Item.

Each time you call the CreateClassTest() function it creates a clsTest class which in turn creates a
frmTest form. Each form is unique and capable of managing itself and its participation in the
public collection. Each form is aware of its Key position in the collection, and each one removes
itself from the collection when you close the form.

Class object: clsTest

Private frm As New Form_frmTest
Private thislD As String
Private Sub Class_Initialize()
frm_Visible = True
frm_Caption = “some string”
End Sub
Public Property Get ClassID() As Variant
ClassID = thislD
End Property
Public Property Let ClassID (ByVal vNewValue As Variant)
thisID = vNewValue
frm.ClassID = thislD
frm.Caption = thislID
End Property

Form: frmTest

no record source

Dim thislD As String
Private Sub Form_Unload()
col .Remove thislID
End Sub
Public Property Get ClassID() As String
ClassID = thisld
End Property
Public Property Let ClassID(ByVal vNewValue As String)
thisID = vNewValue
End Property

Code module: ModuleX

Public col As New Collection
Function CreateClassTest() As String
" create an instance of the clsTest class module, which creates an instance of
" the frmTest form.
Dim cls As New clsTest

Revision: 3/18/2012 Page 101 of 111
Copyright 2001-2012 by Susan J. Dorey

" Create a unique identifier string and set it to the upper index of the
" Public col Collection plus 1.
Dim varClassld As String
varClassld = "Key_" & CStr(col.Count + 1)
" Set the clsTest class module®s ClasslID property to the value of varClasslid,
" which in turn sets the frmTest.Classld property to the same value. This is
" so the form has a method to track its relationship to the collection.
cls.ClasslID = varClassld
" Add the instance of the class object to the collection passing varClassld as
" the Key argument.
col .Add cls, varClassld
MsgBox "Created New Collection Item: " & varClassld, vbInformation, "Class
Example™
" Unload the cls object variable.
Set cls = Nothing
" Return the varClassld.
CreateClassTest = varClasslid
End Function

What Can the Form Do When Started by a Class?

When a procedure that creates a non-default form instance has finished executing, the form
instance is removed from memory unless you've declared the variable representing it as a
module-level variable.

Custom Events

Events are one way in which objects can communicate with each other. Events are strictly
connected with objects. User-defined events can only be established in class modules® (which
represent objects). An event is declared, associated with an event handler (sometimes referred to
as an event sink), and triggered (aka fired or raised). Events can only be triggered in the module
in which they are declared. The event handler resides in a different class module (object)*. Three
statements are involved:

= Event declares a user-defined event. Events don’t themselves return a value; however, you
can use a ByRef argument to return a value.

= RaiseEvent triggers an explicitly declared event.

= WithEvents declares an object variable for the event object (module)>. This allows a second
object to use the event object—its properties and methods and the events that it exposes.
This statement is placed in the Declarations section of the module.

Event syntax:
Public Event eventname [(arglist)]
The arglist argument has the following syntax and parts:

3 Remember forms are objects with class modules.

*You can't handle any type of event from within a code module. But an event handler can call a function or
sub within a code module and vice versa.

5 You can declare an object variable for built-in and Automation objects like VBIDE.CommandBarEvents.
Events exposed by the built-in or Automation object are then passed automatically to your object variable.
Warning: just as with normal functions, the sourced component cannot continue processing until the event
procedure finishes.

Revision: 3/18/2012 Page 102 of 111
Copyright 2001-2012 by Susan J. Dorey

[ByVal | ByRef] varname[()] [As type]
Example:
Public Event LogonCompleted (UserName as String)

RaiseEvent syntax:

RaiseEvent eventname [(argumentlist)]
Example:

RaiseEvent LogonCompleted ("AntoineJan")

WithEvents syntax:
Dim | Private | Public objVarName As [New] objectName

where objectName is the name of the class module containing the event declaration.

Example:
Private varL As Logon

Example of event handler:
Private Sub varL._LogonCompleted(varUser)

End Sub

Event triggering is done in the order that the connections are established. Since events can have

ByRef parameters, a process that connects late may receive parameters that have been changed

by an earlier event handler.

Events are synchronous: when the RaiseEvent statement is executed, its class code won't

continue executing until the event has been either handled by the client or ignored.
Events cannot have optional arguments.

Custom events can be used for any of the following:

= To report the progress of an asynchronous task back to the client application from an out-of-

process ActiveX EXE component.

= To pass through events triggered by the underlying control in an ActiveX custom control.

= As a central part of a real-time multiuser application in an n-tier client-server application.
(Incidentally, events can't be triggered from within a Microsoft Transaction Server Context.)

= To receive notification of events triggered in Automation servers.
= To query the user and receive further input.

Revision: 3/18/2012
Copyright 2001-2012 by Susan J. Dorey

Page 103 of 111

SOURCE OBJECT SINK OBJECT
Class module: class] . : Formmn module: form1
—— || reference
¥ Public Event event1 T Private WithEvents objVar! As classi
a Public Evant event2
5 Private Sub Form_Load()
= Fublic Sub task1() w__ o
2 o T Set objVari = New classi
I . . . Then T End Sub
RaiseEvent event! —_ B
Else e —Z Private Sub sub1{)
RaiseEvent eveni2 | % e I
End If P “rCall obyVar! taski
. Fenr bt End Sub
End Sub g
® Private Sub objVarl_eventi()
End Sub

Figure 10-1: Relationships for custom events.

In the figure above the form module invokes the class object which in turn raises two events. The
form module has an event handler for one of the events.

UserForm

VBA can create and manage custom windows with the UserForm object. A UserForm is created
in the VBE with menu Insert, UserForm, then controls are added from the Control Toolbox, and
events are coded. A window can be inserted directly into a Word document or Excel spreadsheet
or it can be standalone. A window can be modeless (asynchronous) or modal (synchronous).

If the choice UserForm is not on the Insert menu, add it with the Customize dialog box. In Access
2003, Customize is accessible with the menu View, Toolbars, Customize.

In Word'’s Object Browser UserForm is class and member of MSForms (Microsoft Forms 2.0
Object Library). And I cannot find a Show or Load method.

For these VBA objects to work, you must reference the Microsoft Visual Basic for Applications
Extensibility library. UserForm objects and code modules are elements of the VBComponents
collection. The UserForms collection is a collection whose elements represent each loaded
UserForm in an application. The UserForm object is a part of the Visual Basic Language.

To use a UserForm window, you need separate code to open it. If it closes itself, how does the
object get destroyed?

Prior to using a UserForm its object must be instantiated:
Set MyNewForm =
VBE.ActiveVBProject.VBComponents.Add(ComponentType:=vbext_ct_MSForm)

A window has methods:
UserFormName.Show displays (opens) the window

Revision: 3/18/2012 Page 104 of 111
Copyright 2001-2012 by Susan J. Dorey

Load UserFormName

UserFormName.Hide
Unload UserFormName
UserFormName . PrintForm

UserFormName.WhatsThisMode

The window has events:
Initialize
Terminate
Click
QueryClose
Activate
Deactivate

load the window into memory without
making it visible; must be followed by Show
method

temporarily hide the window

remove the window from memory

sends a bit-by-bit image of a UserForm object
to the printer

causes the mouse pointer to change to the
What's This pointer and prepares the
application to display Help on a selected
object

form is loaded

form is unloaded

form is clicked by user

just before form is closed

when the form becomes the active window
when the form no longer is the active
window

The window procedures are named like:

Private Sub UserForm_Initialize()

NOTE the prefix of the procedure name is not the name of the form, which could be something
like “MyForm”, but the literal “UserForm.”

The window has properties:
StartUpPosition

WhatsThisButton

WhatsThisHelp

ShowModal

returns or sets a value specifying the position
of a UserForm when it first appears.
determines whether the What's This button
appears on the title bar

whether context-sensitive Help uses the pop-
up window provided by Windows 95 Help
or the main Help window

whether form is modal (True, default) or
modeless (False):

modeless forms do not appear in the task bar
and are not in the window tab order

Start up position has four possible settings:

Setting Value
Manual 0
CenterOwner 1
CenterScreen 2
WindowsDefault 3

Revision: 3/18/2012
Copyright 2001-2012 by Susan J. Dorey

Description

No initial setting specified.

Center on the item to which the UserForm belongs.
Center on the whole screen.

Position in upper-left corner of screen.

Page 105 of 111

The module containing the event code is commonly said to be “behind” the UserForm. It does
not appear in the Modules collection of the VBE project explorer. It is only accessible by double-
clicking the body of the window.

Manipulate the window after instantiating its object:
With MyNewForm

.Caption = “can be different for each use”
End With

Run a Procedure Whose Name is in a String

You can use the Application.Run command to run a Function. Your code would look like this.

Sub cmdCall_Click(subName as String)
Application.Run subName
End Sub

Hyperlinks in Excel File

When you create a hyperlink with Excel, its destination is encoded as a Uniform Resource
Locator (URL) with a protocol, such as:

http://example.microsoft.com/news.htm

or

file://ComputerName/SharedFolder/FileName.htm

When you create a hyperlink on an Excel object with VBA, it must be similar.

Menu Bars and Toolbars

You can modify built-in menu bars and toolbars and create custom ones.

There can be several menu bars: Access’s built-in (default) menu bar, the application’s global
menu bar, a form/report’s custom menu bar. Global menu bar is a custom menu bar that replaces
the built-in menu bar in all windows in your application, except where you’ve specified a custom
menu bar for a form or report. If you've set the MenuBar property for a form or report in the
database, the custom menu bar of the form or report will be displayed in place of the database’s
custom menu bar whenever the form or report has the focus. When the form or report loses the
focus, the custom menu bar for the database is displayed.

In order to program with command bars, you must set a reference to the Microsoft Office object
library. Use VBE menu Tools, References to open the “References” dialog box, then select the
check box next to Microsoft Office Object Library.

Command Bars and Controls

The menu bar is a CommandBar object, it belongs to Microsoft Office VB. There are three kinds
of CommandBar objects: toolbars, menu bars, and pop-up menus. Pop-up menus are displayed in
three ways: as menus that drop down from menu bars, as submenus that cascade off menu
commands, and as shortcut menus. Shortcut menus (also called context or “right-click menus”)
are floating menus that appear when you right-click something.

A CommandBar has a CommandBarControls collection that represents its controls.

Revision: 3/18/2012 Page 106 of 111
Copyright 2001-2012 by Susan J. Dorey

There are different kinds of controls:

Button control: A button on a toolbar or a menu item on a menu, submenu, or shortcut
menu that runs a command when it is clicked. Buttons and menu items are represented by
CommandBarButton objects.

Pop-up control: A built-in or custom control on a menu bar or toolbar that displays a menu
when it is clicked, or a built-in or custom menu item on a menu, submenu, or shortcut menu
that displays a submenu when the pointer is positioned over it. In other words, a menu item
that starts a drop-down or cascading submenu. Pop-up menu controls that represent menus
and submenus can be nested several layers deep. The pop-up controls are represented by
CommandBarPopup objects. Pop-up controls have a Controls collection representing each
control on the pop-up menu.

Combo box control: A custom control that displays a text box, drop-down list box, or combo
box. These three types of controls are all represented by CommandBarComboBox objects.

In the following illustration, the control named “Menu” and the control named “Submenu” are
both pop-up controls that display a menu and a submenu, respectively. Both the menu and the
submenu are unique CommandBar objects with their own set of controls.

Submenu bk @Dpﬂn
[save
S

You can modify the location and appearance of built-in controls. You can change the action of
any control to either a built-in or custom function.

Possibly useful methods and properties:

Name Object Effect
AllowBuiltInToolbar | application specifies whether or not the user can display
s property Microsoft Access built-in toolbars. Can be set
as database startup option or at runtime (in
code).
MenuBar property application, form, specifies the menu bar to use for a database,
report form, or report. You can also use the

MenuBar property to specify the menu bar
macro that will be used to display a custom
menu bar for a database, form, or report.
Read/write

Revision: 3/18/2012 Page 107 of 111
Copyright 2001-2012 by Susan J. Dorey

Name Object Effect

ActiveMenuBar CommandBars returns a CommandBar object that represents
property collection the active menu bar in the container
application. Read-only.

Controls property command bar returns a CommandBarControls object that
represents all the controls on a command bar
or pop-up control

Reset method command bar resets a built-in command bar to its default
configuration, or resets a built-in command
bar control to its original function and face

Add method command bar adds a control to a command bar
controls collection

ShowPopup method | command bar displays a shortcut menu

Enabled method command bar if this property is set to True, the user can
make the specified menu bar visible by using
Visual Basic code. If this property is set to
False, the user cannot make the menu bar
visible, but it will appear in the list of
available command bars. The Enabled
property for a command bar must be set to
True before the Visible property is set to True.

Protection method command bar makes it possible for you to protect the menu
bar from specific user actions

Position method command bar specifies the position of the new menu bar
relative to the application window. Can be
one of the following MsoBarPosition
constants: msoBarLeft, msoBarTop,
msoBarRight, msoBarBottom,
msoBarFloating, msoBarPopup (used to
create shortcut menus),

BeginGroup command bar control | returns or sets whether the specified

property command bar control appears at the
beginning of a group of controls on the
command bar

Caption property command bar control | returns or sets the text of the control; use “&”
to indicate the following character is a
shortcut key

ID property command bar control | returns the ID for a built-in control

OnAction property command bar control | returns or sets the name of a VB procedure or

the actual code that will run when the user
clicks or changes the value of a control

Revision: 3/18/2012 Page 108 of 111
Copyright 2001-2012 by Susan J. Dorey

Name Object Effect

Style property command bar control = without it you won't see the control! Returns
(button or combo or sets the way a command bar control is
box) displayed; uses constant group

msoButtonStyle, msoButtonCaption seems to
force the caption text to show on the button

Type property command bar control | returns the type of command bar control.
Read-only MsoControlType. For my
purposes a type of msoControlLabel may do
the job.

Visible property command bar, returns or sets whether the bar or control will
command bar control | be displayed or hidden from the user. If the
control is hidden from the user, the menu bar
name will still appear in the list of available
command bars. The Visible property for
newly created custom command bars is False

by default.
BeginGroup command bar control | returns or sets whether the specified
property command bar control appears at the

beginning of a group of controls on the
command bar

Delete method command bar control | deletes control from command bar

ListIndex property combo box control returns the item typed or selected in the
combo box

AddItem method combo box control adds an item to the drop-down list portion of

a drop-down list box or combo box

The “Menu Bar” CommandBar object refers to the main (built-in) menu bar in Microsoft Word,
Microsoft PowerPoint, and Microsoft Access. The main menu bar in Microsoft Excel is called
“Worksheet Menu Bar.” Built-in menu items can be referred to by name, e.g.,

Set ctlCBarControl = Application.CommandBars(“Menu Bar’).Controls(“Tools™) _
.Controls(“Macro”) .Controls(“Macros...”)
Set ctlCBarControl = Application.CommandBars(“Macro’).Controls(“Macros...”)

Command Bar and Control Events

You can specify event procedures for custom controls and for built-in controls. In the second
instance, your procedure serves to replace the built-in procedure.

Revision: 3/18/2012 Page 109 of 111
Copyright 2001-2012 by Susan J. Dorey

Object Event When Triggered

CommandBars OnUpdate | inresponse to changes made to an Office document

collection that might affect the state of any visible command bar
or command bar control. For example, the OnUpdate
event occurs when a user changes the selection in an
Office document. You can use this event to change the
availability or state of command bars or command bar
controls in response to actions taken by the user.

CommandBarButton Click user clicks a command bar button
CommandBarCombo | Change user makes a selection from a combo box control
Box

To expose these events, you must first declare an object variable in a class module by using the

WithEvents keyword.
Public WithEvents colCBars As CommandBars
Public WithEvents cmdBold As CommandBarButton

Private Sub colCBars_OnUpdate()
“ Insert code you want to run in response to selection changes in an
“ Office document.

End Sub

After you have added code to the event procedures, you create an instance of the class in a
standard or class module and use the Set statement to link the control events to specific
command bar controls.

Option Explicit

Dim clIsCBClass As New clsCBEvents

Sub InitEvents()
Dim cbrBar As CommandBar
Set cbrBar = CommandBars('‘Formatting Example')
With cbrBar
Set clsCBClass.cmdBold = _Controls(*'Bold'™)
Set clsCBClass.cmdltalic = _Controls("ltalic™)

Set clsCBClass.cmdUnderline = .Controls('Underline')
Set clsCBClass.cboFontSize = _Controls(*'Set Font Size™)
End With
Set clsCBClass.colCBars = CommandBars
End Sub
Code

Sample code:
“ create command bar

Dim cmb As CommandBar

Set cmb = Application.CommandBars.Add(**"MyCommandBar'")
cmb.Visible = True

“ add a control

Dim cbc As CommandBarControl

Revision: 3/18/2012 Page 110 of 111
Copyright 2001-2012 by Susan J. Dorey

Set cbc = cmb.Controls.Add(msoControlButton)
cbc.Caption = "Buttonl"
cbc.Style = msoButtonCaption

“ specify what happens when control is clicked
CommandBars(*'MyCommandBar') .Controls("'Buttonl'™) .0OnAction = "=MsgBox(*""'Wow!""")"

“ add c ontrol to main menu bar

Private cbrMenu As CommandBar

Private ctlRecalc As CommandBarControl

Dim txtAction as String

Set cbrMenu = Application.CommandBars('‘Menu Bar'™)

Set ctlRecalc = chrMenu.Controls.Add(Type:=msoControlButton, Temporary:=True)
ctlRecalc.Caption = "Re&calculation"

ctlRecalc.Style = msoButtonCaption

txtAction = "=Forms(''"'Main""") .Recalc"

ctlRecalc.OnAction = txtAction

Revision: 3/18/2012 Page 111 of 111
Copyright 2001-2012 by Susan J. Dorey

	Contents:
	VBA Basics
	Introduction to VB
	Constants
	Enumerated Data Type
	Bit Masks
	Empty Fields

	Application Documentation
	Report Database Objects
	Report Forms and Controls with Data Source
	Report References
	Report Permissions
	Report Fields in Tables

	Automation, Formerly OLE Automation
	Background

	Interact with Word
	Automation
	Visible
	Binding
	Handling Read-Only Documents
	Field Codes

	Interact with Excel
	Using Automation
	Accessing Workbooks
	Refer to Cells
	Manipulating an Excel File
	Hyperlinks
	Export Access Table to Excel File
	Create Excel Spreadsheet From Access Table
	Another Access to Excel Technique
	Import Excel File

	Visual Basic Code (in Modules)
	Overview
	Comments
	Doing work
	Data
	Expressions
	Looping and Conditions

	Statements with Arguments
	Set References for Object Libraries
	Procedures
	Object Model: Collections, Objects, Methods, Properties
	Process Control
	Recursion
	Global Variables etc.
	Error Handling
	Doing Things Periodically
	Indicate Progress—User Feedback
	Hourglass
	Message in the status bar
	Display progress meter in embedded control
	Message box at completion
	Present lengthy exception messages in a report
	Progress information form
	An approach with presenting the progress information form as a subform

	Asynchronicity
	More info on DoEvents

	Referring to the Database
	Message Box
	Use Input Box To Get Data From User
	Open/Close A Form
	Open/Close a Report
	Open Table
	Read a Linked Table, Find a Record
	Run a Query
	Using ODBC Direct
	Table Existence
	Update a Table in Code
	Update Parent-Child Tables in Code
	Count the Number of Occurrences of a Character in a Field
	Count Records
	String Manipulation
	Getting Network User Id
	Combine Records by Stringing
	Let User Cancel Program
	Log User Activity
	Change a Table Field Name
	Is Functions
	Run-time Error 70 Permission Denied
	Change Text of Access Title Bar
	Export Table as Spreadsheet
	Create Table by Import with Hyperlink
	File Attributes
	Get/Set File Information with FileSystemObject
	 Using the Shell Objects
	Prompt User for Folder-Directory with Shell APIs
	Prompt User for Filename/Folder With FileDialog Object
	Walking a Directory Structure
	Use Dir To Capture Filenames
	Rename File
	Copy a File
	Delete File
	Delete Folder
	File and Office Document Properties
	For Open Files Use Object BuiltInDocumentProperties
	For Closed Files Use DSOFile.OleDocumentProperties

	Get UNC
	DAO Objects
	Using Automation
	Read MDB From Word Document
	Using DAO
	Using Access Objects
	Using an ActiveX Control in the Word Document

	Populate Non-Table Data in a Form or Report
	Custom Object as Class
	Property Get/Set/Let

	Controlling a Form by a Class Object
	Class object: clsTest
	Form: frmTest
	Code module: ModuleX

	What Can the Form Do When Started by a Class?
	Custom Events
	UserForm
	Run a Procedure Whose Name is in a String
	Hyperlinks in Excel File
	Menu Bars and Toolbars
	Command Bars and Controls
	Command Bar and Control Events
	Code

